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ABSTRACT
Hybrid computing platforms, comprising CPU cores and FPGA
logic, are increasingly used for accelerating data-intensive work-
loads in cloud deployments, and are a growing topic of interest in
systems research. However, from a research perspective, existing
hardware platforms are limited: they are often optimized for con-
crete, narrow use-cases and, therefore lack the flexibility needed to
explore other applications and configurations.

We show that a research group can design and build a more
general, open, and affordable hardware platform for hybrid sys-
tems research. The platform, Enzian, is capable of duplicating the
functionality of existing CPU/FPGA systems with comparable per-
formance but in an open, flexible system. It couples a large FPGA
with a server-class CPU in an asymmetric cache-coherent NUMA
system. Enzian also enables research not possible with existing
hybrid platforms, through explicit access to coherence messages,
extensive thermal and power instrumentation, and an open, pro-
grammable baseboard management processor.

Enzian is already being used in multiple projects, is open source
(both hardware and software), and available for remote use. We
present the design principles of Enzian, the challenges in building it,
and evaluate it with a range of existing research use-cases alongside
other, more specialized platforms, as well as demonstrating research
not possible on existing platforms.
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1 INTRODUCTION
In this paper, we tackle how to facilitate relevant and far-reaching
systems software research in an unstable and rapidly churning
hardware landscape.

Until recently, research in operating systems, data management,
networked systems, storage, and cloud computing has relied on
commodity PC servers and associated peripherals as the underly-
ing hardware platform. This has allowed considerable variation in
functionality and performance while the commonality and general-
purpose nature of this platform has made it easy to agree on rel-
evant challenges, build on prior work, and apply ideas quickly in
real-world scenarios.

This is no longer the case. Specialized architectures are increas-
ingly deployed in place of less efficient conventional systems [70].
While the trend started with the proliferation of GPUs, today there
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is a plethora of specialized processors and hardware accelerators
used in both mobile devices and at all levels the cloud stack: smart
storage, smart caches, smart NICs, programmable switches, TPUs,
Field Programmable Gate Arrays (FPGAs), and so on.

In this work, we focus on “hybrid” systems combining CPUs
and FPGAs, as they both cover a wide range of existing and future
applications, and also provide greater potential for systems soft-
ware research. Such systems are becoming widely deployed today,
particularly in the cloud.

However, even for these existing systems, there is no consen-
sus on the best long-term design choices for these new hardware
platforms. Current designs are often cost-optimized for narrow use
cases. We survey this space in Section 2.1, and show that even basic
questions like whether cache-coherence between CPU and FPGA
is a good idea have no clear answers.

Many such issues would benefit from software systems research
insights. However, to date, academic research in systems has been
tightly constrained by the available hardware. Creatively exploring
the large hardware design space from a systems perspective is
practically impossible.

Each CPU/FPGA platform today comes with its own quirks and
limitations. One must first choose an existing platform (not de-
signed for exploratory long-term research), climb the learning curve
for programming it, fight its limitations for applications outside
the intended use-case, and try to derive useful results about future
software designs based on this. The situation is made worse by the
closed, proprietary, and/or poorly-documented nature of many of
these platforms not to mention the added complexities associated
with FPGA development.

Not only does this make it difficult to explore the design space,
but it is also impossible to compare results across different platforms,
or transfer ideas from one platform to another. In Section 2.2 we
survey the considerable recent work on “operating systems” for
FPGAs, which illustrates the constraints researchers face when
testing and deploying their designs.

To address this, we took inspiration from Mogul et al. [45] and
designed and built an open, hybrid computing platform informed
by system software experience but also optimized for longer-term
research. The result, Enzian (Figure 1), provides both coverage (it
can be used to explore a superset of the hardware design space of
existing systems) and openness (practically all the system is available
for access and modification).

Enzian is a 2-socket coherent Non-Uniform Memory Access
(NUMA) system where one node is a large FPGA, and can be con-
figured to imitate a wide range of hybrid computing platforms on
the market, with comparable performance. This makes it possible
to evaluate new ideas at scale, with real workloads, and compare
the advantages and disadvantages of different designs and hard-
ware/software options. However, Enzian goes beyond current sys-
tems in how it allows memory, network, storage, cache coherence,
and other resources to be configured, and thus not only fully covers
but greatly extends the “convex hull” of existing systems.

Enzian is an EATX format [74] (305×330mm) server board (Fig-
ure 1). Since it is built as a research computer, it also incorporates
functionality often lacking in commodity, cost-optimized parts. It
is heavily instrumented for power and thermal management. The
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Figure 1: A complete Enzian board

open nature of the platform means that the Baseboard Manage-
ment Controller (BMC), generally hidden on modern servers and
accelerator cards, is fully available for programming. Direct, low-
level access to cache coherence messages in the FPGA open up a
range of research applications in system tracing, cache manage-
ment, and high-performance I/O. Remarkably, Enzian achieves this
at reasonable unit cost, comparable to a medium-to-large 2-socket
rack-mount server.

Enzian makes several key research contributions. First, it shows
that a single research platform can not only cover but extend the
convex hull of all the existing platforms for hybrid systems research,
and do so without excessive unit cost, which demonstrates that
the specializations we see in other platforms are, in fact, narrow
cost-based compromises and not technically grounded.

Second, we show research results unobtainable with existing plat-
forms, such as a server-class application-specific memory controller.
More broadly, we show the benefits (in both raw performance and in
functionality) of expanding the design space for hybrid systems by
eschewing standards like PCI Express (PCIe) in favor of lower-level
interconnects more closely coupled with the CPU.

Thirdly, the process of building Enzian and the openness of the
resulting platform (in particular the board management firmware)
expose, and facilitate addressing, fundamental problems previously
unaccessible to the research community that arise in the construc-
tion of modern servers.



Enzian: An Open, General, CPU/FPGA Platform for Systems Software Research ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Host DRAM Device DRAM

LLCCores

Xeon FPGA

PCIe
AFU

Memory
Controller

PCIe
DMA

Host DRAM Device DRAM

Cores

Power 8 FPGA

PCIe
AFU

Memory
Controller

PSLCAPP

PCIe
DMA

Host DRAM

LLCCores

Xeon FPGA

QPI
AFUSPL

Host DRAM

LLCCores

Xeon Arria 10 FPGA

UPI

AFUFIUPCIe
PCIe

Conventional PCIe-based platform
(Alpha Data, F1 Instance)

PCIe-based CAPI platform

QPI-based Xeon+FPGA v1 Broadwell+Arria 

Host DRAM

LLCCores

Xeon Catapult FPGA

AFUSPL

Catapult

PCIe
PCIe

NICPCIe

Device DRAM Host DRAM FPGA DRAM

Cores

ThunderX-1 FPGA

ECI AFU

Memory
Controller

ECI
Controller

Enzian

LLC PCIe

2x40G

40G

ECI
Controller

NIC NIC

Cache

100G

4x100G

40G

Figure 2: CPU+FPGA topologies (adapted from Choi et
al. [13])

Following our surveys in Section 2, in Section 3 we discuss the
goals of Enzian and the design principles (and constraints) that
guided its development. Section 4 then describes the platform im-
plementation in detail. Section 5 shows that Enzian can subsume
many existing designs for hybrid systems, while also adding new
functionality of value to researchers. We demonstrate Enzian act-
ing in the role of a range of different other systems, and show that
its performance is highly competitive. We then show research use
cases not possible with existing hardware platforms. Finally, we sup-
plement this large-scale evaluation with both micro-benchmarks
and demonstrations of Enzian’s instrumentation.

In Section 7 we conclude and lay out our future plans for making
Enzian widely available as a research platform.

2 BACKGROUND AND RELATEDWORK
In this section we motivate and provide the necessary background
for Enzian as well as covering related work.

2.1 The Changing FPGA Platform Landscape
We begin by describing the wide range of hybrid CPU/FPGA plat-
forms available, and by examining their features and limitations
from a research perspective, support our argument for a common,
open research platform.

Choi et al. [14] surveyed and illustrated the diversity of hybrid
CPU/FPGA platforms, and in particular the relationship between
the CPU and FPGA. We use their classification to position Enzian
in today’s landscape. Figure 2 compares the configuration of Enzian
with that of other systems, and Figure 3 compares its DRAM and
interconnect performance to that of these systems (the performance
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Figure 3: CPU-FPGA performance summary (adapted from
Choi et al. [14]), with Enzian added for reference

data for Enzian are discussed in Section 5.1). Existing platforms fall
into several categories, though some systems span multiple areas.

The first consists of PCIe-based accelerators in conventional
servers, including modern offerings like the Intel D5005 [30], Alpha
Data [3], Xilinx Alveo [76, 77], and the often-proprietary hardware
deployed in cloud-based solutions from Amazon [4] or Alibaba [1].

Card-based acceleration (e.g., Amazon F1 [4]) is often modeled
after GPUs with a programming interface based on batch-oriented
programming models like OpenCL, where data is copied en-masse
onto the card’s memory for computation, and the results copied
back to host memory using PCIe Direct Memory Access (DMA).

PCIe has sufficient bandwidth for such bulk transfers, but the
limitations of this model are known to be a performance problem
for fine-grained workloads. Efforts like the Open Coherent Acceler-
ator Processor Interface (OpenCAPI) [66] and its predecessor the
Coherent Accelerator Processor Interface (CAPI) [65], have sought
to add more complex memory functionality into the accelerator,
still viewing the FPGA as a PCIe-attached peripheral but adding a
hardware protocol layer for cache coherence, fault handling, and
virtual address translation. More recent protocol efforts to include
similar capabilities over current or future versions of PCIe include
Cache Coherent Interconnect for Accelerators (CCIX) [11] and Intel
Compute eXpress Link (CXL) [19].

The second category eschews PCIe (or augments it) in favor of a
full cache coherency protocol, as in Intel HARP systems [29, 51,
57], and more recently Intel’s Broadwell+Arria architecture, which
combines cache-coherent Universal Path Interconnect (UPI) and
also PCIe links between CPU and FPGA. This results in very differ-
ent software designs. Even PCIe-based OpenCL kernels ported to
Intel HARPv2 have derived significant benefits from shared virtual
memory versus explicit reads and writes to the FPGA [7]. Compres-
sion accelerators developed specifically for this architecture obtain
dramatically higher performance [57]. Dagger [39] implements Re-
mote Procedure Call (RPC) on the FPGA to use it as a smart NIC,
taking advantage of the network connection available in the Arria
10 FPGA. Kona [8] uses the coherent interconnect to implement
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remote memory by exposing “fake” physical memory backed by
memory on other Kona machines.

Cache coherent FPGAs to date, however, also impose limitations
on research. The design is skewed towards fine-grained acceler-
ation, and the FPGA often has no local memory except a small,
fixed cache. The coherence protocol remains closed, with the FPGA
“shell” enforcing specific usage models for the interconnect via
a wrapper. There are sound engineering decisions for this from
the hardware vendors’ perspective, but research use-cases remain
tightly constrained.

A third category centers on a network interface, using the FPGA
as the basis of a smart NIC. Dedicated FPGA-based smart NICs
like Mellanox Innova [44] connect an FPGA to the NIC through an
internal PCIe bus. Because there is no direct connection between
FPGA and CPU, these smart NICs can only be used to process
network packets. This permits exploring hardware acceleration for
network protocols, and the NetFPGA [48] project has created a
series of open-source FPGA-based NICs to facilitate this. NetFPGA
strongly influenced our work in its goals and motivation, but our
goal is much broader than networking research. In contrast to these
approaches, more modern FPGA accelerators increasingly provide
some network interface, allowing greater flexibility and probably
serving better as smart NICs [39, 64].

Of particular relevance are Microsoft’s series of Catapult FPGA
systems for datacenters, where the FPGA is connected to the CPU
through both a PCIe link and an Ethernet “bump in the wire” con-
nection [10, 24, 56]. Such hardware has been used to accelerate
applications ranging from key-value stores [40] to machine learn-
ing [15], and illustrates some of the advantages of FPGAs over
(rather faster) ASICs in time-to-market and evolvability — for ex-
ample, through the use of custom numeric formats for machine
learning. Catapult, however, remains a closed system, with rela-
tively few on-board resources like memory (due to niche in cloud
networking).

A final category is the single-chip hybrid platform or Mul-
tiprocessor System-on-a-Chip (MPSoC). These (e.g. [18]) inte-
grate CPU cores onto an FPGA die. Access to the cache protocol
on the chip in these systems allows a use-case not possible with
Intel HARP: the FPGA acting as part of the CPU’s memory system,
enabling research into new remote memory protocols [8, 9] and
cache management [58]. However, such systems are tiny in com-
parison with server machines, typically using 4 low-power ARM
cores with limited DRAM. This makes it hard to examine either
future on-die solutions or even contemporary datacenter workloads
running on mid-range servers, which is unfortunate since these are
the scenarios typically targeted by such architectures.

Ultimately, all these platforms work well for their intended use-
cases but are limited in their own ways, constraining the research
possible with them. Enzian aims to cover this whole space and
more: native coherence between CPU and FPGA, ample memory
and network bandwidth on the FPGA, and open, low-level access
to all aspects of the system.

2.2 System “Software” for FPGAs
The rise of FPGA deployments has led researchers to examine what
resource management means in the context of hybrid systems,

which so far lack the basic abstractions provided by a traditional
OS: memory management, scheduling, services like the network,
etc. [38]. This is partly due to the rather dated concept of FPGAs
as discrete acceleration units for manually offloading processing,
independent of the primary CPU and its memory. The persistence
of this concept in the available hardware platforms therefore con-
strains any attempts to implement and evaluate the equivalent of
an OS for a hybrid system. In some cases, the resulting designs
seem to be mostly a consequence of the underlying hardware.

AmorphOS [34] tackles the challenge of multi-tenancy in FPGAs
by transforming the problem of sharing the FPGA fabric into a com-
pilation/synthesis problem. Applications are either pre-compiled
with multiple versions that can be assigned to different FPGA re-
gions, or merged into a single circuit deployed as a unit. AmorphOS
views the FPGA is an isolated device with no network connection
or access to host memory, and the design follows from this.

Optimus [42] also tackles multi-tenancy on FPGA accelerators. In
contrast to AmorphOS, it provides sophisticated, controlled access
to host memory, including virtual addressing. However, Optimus
focuses on PCIe-attached boards and therefore does not address
cache coherency, access to FPGA memory from the CPU, or net-
working since these are features rarely found together in existing
hardware.

Even Coyote [38], which probably implements the most micro-
kernel-like set of abstractions and offers the greatest flexibility in
memory addressing and protection, still restricts access to what one
would expect in a PCIe card, rather than a full NUMA system in
which the FPGA is a first-class participant in the memory system.

These and other recent systems make their choices for good
reasons, and are solving complex and difficult problems. Our goal
is not to criticize them, but to point out that they are primarily a
product of the concrete configuration and features available in the
hardware platforms they on which they run [26].

A fully-fledged analysis of OS design for hybrid systems needs
a full-featured platform where one can argue generality and ex-
pandability, and also where different designs (perhaps emphasizing
different trade-offs) can be compared directly.

Today, a valid comparison of, say, Dagger with Optimus is in-
feasible due to the radically different choices adopted by Intel’s
HARP-derived product and Xilinx’ PCIe cards.

3 ENZIAN APPROACH AND DESIGN
PRINCIPLES

We experienced these challenges first-hand in our previous research,
and in response we decided to design and build our own research-
oriented hardware platform and make it available to the research
community. We took inspiration from past projects to create com-
mon research platforms and infrastructure, for example Berkeley
Unix, Emulab [73], PlanetLab [54], and in particular the NetFPGA
project [48]. We were also encouraged by Mogul et al. [45] to be
critical of existing hardware designs, and try to design hardware
from a software perspective.

The result is Enzian, a server-class machine designed for systems
research into hybrid computing, typically overengineered for any
single application, but which emphasizes as much flexibility as
possible in how it can be used in research.
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A flexible platform optimized for research has many advantages.
It can includemuchmore instrumentation than commercial products
(e.g. for detailed power measurements). It reduces the learning
curve for students, since one platform can be used across a range
of projects. Moreover, it can act as reference point for comparing
ideas. By being open and overengineered, it encourages research
applications not yet envisioned when it was designed. If Enzian can
be shared across the research community, it will allow much greater
composition of projects across institutions and sharing of new tools,
techniques, and applications.

Whereas a commercial product is aimed at a ready market and
set of existing application use-cases, a research machine can be
viewed from several different perspectives.

Firstly, like existing products it is a platform for running applica-
tions, and can be used to design, prototype, and evaluate new and
better ways to exploit FPGAs as part of a complete system. Much
of our evaluation of Enzian in Section 5 is from this perspective,
showing that it can be used in place of existing products for the
same applications.

Secondly, however, it also is a means of prototyping ideas that
may eventually find their way into dedicated hardware like ASICs.
Enzian is thus also a way to help system software researchers
explore the broad hardware design space. In Section 5.4 we demon-
strate an example using the FPGA to emulate a custom memory
controller.

Thirdly, we can also view one part of Enzian as a way to instru-
ment and control the rest of the platform. In Section 5.5 we show
this with detailed power measurements, but there are other ways
of partitioning Enzian into a “system under test” and “test harness”
that we do not explore in this paper, such as detailed cache tracing
using the coherence protocol, or runtime verification by feeding
processor trace records in real time to the FPGA.

A research-optimized platform like Enzian can only function if
it meets two important criteria:

• It must provide maximal coverage: it must be capable of
replacing existing, more specialized platforms, and cover as
much of the potential hardware design space as possible.

• Performance must be adequate. It is unlikely to outperform
more specialized platforms, but performance should be good
enough to be in the same ballpark.

In the rest of this paper we show that Enzian meets these require-
ments: it provides a superset of the functionality of existing plat-
forms, with performance that is close enough to make strong claims
for research projects implemented using it.

In addition, Enzian had other requirements. First and foremost,
we had to design and build it on an academic research budget. It
also had to be as usable and easily programmable as possible.

We faced a long series of challenges in designing and building
Enzian. However, three are particularly relevant to its intended use
as a flexible computer for research. The first was simply deciding
on the high-level specification of the machine. We were guided by
a set of design principles and also a set of pragmatic compromises to
make the project feasible.

Our design principles were as follows; note that most are the
exact opposite of good industrial product design practice:

• Don’t worry about unit cost:While anxious to keep the
project budget under control, we made no specific effort to
minimize the unit cost of the eventual Enzian boards. This
is the opposite practice to product development, where up-
front design investment can yield more cost-effective end
products. As a research machine, Enzian will only exist in
relatively small numbers in labs, and so it is better to increase
flexibility and ease of design at the cost of price-per-unit.

• If in doubt, overengineer: A research platform should
limit researchers as little as possible. We exposed as much
functionality of our components to the programmer as we
could, and used the highest-specification components avail-
able. For example, we used the largest, and fastest, Xilinx
FPGA avilable at the time, and used almost all the FPGA’s
high-speed transceivers for NVM Express (NVMe), network-
ing interfaces, etc. Overengineering, or “maxing everything
out”, optimizes the flexibility of Enzian at the expense of unit
cost; it can always be used to emulate a less capable board.

• Favor bandwidth over capacity:Many tradeoffs were of
this nature. For example, we could have supported more
DRAM capacity at the cost of bandwidth. We chose to favor
bandwidth (one DDR4 DIMM per channel) since it is easier
to scale experiment workloads by data volume, and higher
performance facilitates easier experimentation.

• Avoid the limitations of standards: A research platform
does not need to support an extensive industry ecosystem,
but should allow experimentation beyond the restrictions of
existing standards where practical. For example, we did not
build Enzian around the PCIe connection used by most het-
erogeneous machines, instead using the CPU’s native cache
coherence protocol. PCIe is fast, and so this choice makes
little difference for a class of use-cases derived from GPU-
based workloads. However, it pays dividends when viewing
the FPGA as a NUMA node, a custom memory controller, or
a way to instrument the CPU’s cache, for example.

• Instrument as much as possible:We were able to instru-
ment power and clock regulators in a way not possible with
commercial boards, and we took full advantage of this, much
of it facilitated by us having to write our own BMC firmware.

• Don’t just think in single units: A platform like Enzian is
as much a building block for larger systems as it is a single
discrete machine, and the flexible design should reflect this.
For example, one reason that Enzian has such large network
bandwidth (480 Gb/s) is to enable, e.g., many boards to be
connected together into a single, large multiprocessor (with
or without cache coherence), or to allow prototyping novel
network switches or middleboxes.

At the same time, we faced practical limitations in what we could
build, through limited resources, skill-sets, and time. The major
scoping decision we took was selecting the CPU.

We decided early to focus on platform-level architecture research
rather than trying to support work on processor design (for example,
instruction set extensions or closely-coupled coprocessors), at full
clock speed. This would have required designing and building a
new processor (something beyond our group’s skill and time), and
is an area already well-served by the RISC-V initiative.
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Figure 4: Enzian block diagram

We therefore needed an existing server-class CPU part support-
ing multisocket NUMA configurations, with a cache coherence pro-
tocol we could interoperate with on the FPGA. When we started,
only one available SoC met these requirements, and that remains
mostly true today. The Enzian CPU part trades off single-thread
performance (it is mostly in-order) for parallelism. Even so, with
48 64-bit ARM cores at 2.0 GHz, performance is respectable.

We now describe in detail the Enzian that resulted from these
design principles.

4 DESIGN
Enzian (see Figure 4) is a two-socket asymmetric NUMA system in
which one node is a 48-core Marvell Cavium ThunderX-1 ARMv8
CPU [49, 50] clocked at 2.0 GHz. This System-on-Chip (SoC) has
several accelerators (crypto, NIC, etc.) on-die, and the “networking”
variant we use also has a programmable match-action table switch.
The CPU has 128 GiB of DRAM on four DDR4 channels. The second
node is a Xilinx XCVU9P Ultrascale+ FPGA [78].We use the highest-
speed variant of the FPGA, and in practice it runs at clock speeds
between 200 and 300 MHz, depending on the loaded bitstream.

The FPGA has four DIMM slots collectively supporting up to
1 TiB DDR4 DRAM (current systems use 512 GiB or 64 GiB), and is
connected to the CPU over the latter’s native coherent interconnect
using 24 10 Gb/s lanes with total theoretical bandwidth of 30 GiB/s
in each direction.

Following the philosophy of “maxing everything out”, both nodes
have ample network bandwidth: 2 × 40 Gb/s Ethernet interfaces on
the CPU SoC and 16× 25 Gb/s serial lines on the FPGA, configurable
as e.g. 4 × 100 Gb/s or 16 × 25 Gb/s Ethernet links. The motivation
for such bandwidth on the FPGA is not simply to allow use as
a smart network interface adaptor (NIC) (as in Section 5.2) or to
cover the use cases for Microsoft Catapult [10, 24, 25, 56]. It also
allows experimentation with custom fabric protocols and permits
multiple Enzian boards to be connected into a single multiprocessor
(possibly extending cache coherence across machines), a topic we
intend to investigate in future work.

The FPGA also has a PCIe x16 slot and a single NVMe connector,
to complement 3 × NVMe, 4 × Serial ATA (SATA), and a single PCIe
x8 slot on the CPU. With the interconnect and DRAM, this accounts
for all the high-speed pins available on the FPGA (even though we

chose the XCVU9P to maximize the available transceivers). Addi-
tional components such as High-Bandwidth Memory (HBM) can be
connected to the FPGA using an adapter to the FPGA Mezzanine
Card (FMC) or PCIe slot.

4.1 Coherent Interconnect
A key feature of Enzian in comparison with commercial hybrid
CPU/FPGA server platforms is that CPU and FPGA are connected
via the CPU’s native inter-socket cache coherence protocol, rather
than PCIe. This was a major design decision, and indeed a key
motivation to build Enzian in the first place. While modern PCIe
implementations provide excellent theoretical bandwidth for GPU-
style applications, they impose performance constraints on other
usage models that would have limited the scope of Enzian. That said,
it is possible to connect the two nodes via PCIe using a crossover
cable, allowing reproduction of PCIe-based experiments or out-of-
band communication from the inter-socket interconnect.

The need to use a “native” inter-socket protocol determined
the choice of CPU, which had to support server-class multi-socket
configurations via a protocol which we could practically implement
ourselves on the FPGA. At the time, the only candidate was the
Cavium (nowMarvell) ThunderX-1 series. Interestingly, none of our
use-cases for the coherence protocol so far involve implementing
a significant cache on the FPGA, which in any case would have
limited performance.

Our implementation, the Enzian Coherence Interface (ECI), is a
MOESI-based protocol with 128-byte cache lines that in principle
allows a line to be cached on the home or requesting node. It also
supports non-cached small I/O reads andwrites, and inter-processor
interrupts. The system’s physical address space is statically parti-
tioned between the CPU and FPGA.

Getting ECI to interoperate with the ThunderX-1’s CCPI pro-
tocol was a significant challenge despite much help and support
from the vendor in terms of documentation and conversations with
the designers. Recent standardization efforts [11, 19] aside, coher-
ence protocols are not designed for interoperability, but instead for
two identical silicon parts to talk to each other, and are typically
documented accordingly.

For ECI, it helped that the lower layers of the protocol closely
resembled existing standards, and were implemented on the CPU
with attention to robustness. The CPU-side implementation had
extensive diagnostic hardware, could be controlled from the Board
Development Kit (BDK) command line before the processor fully
booted, and dialed up and down in lanes and speed, allowing us to
bring up our implementation gradually.

Nevertheless, significant effort was required. We extensively
used built-in logic analyzers on the FPGA side to debug the imple-
mentation. We also took protocol traces of a 2-socket CPU system
booting for reference, and wrote a Wireshark plugin to decode the
coherence protocol’s upper layers.

We then defined our own serialization format for themessages on
ECI’s various virtual circuits. This not only allowed us to store and
analyze traces in a nice format, but also served as an interoperability
standard for various software tools [43]. For example, we built a
simulation environment which glued together a model we wrote
of the CPU’s L2 cache (running as part of ARM’s “FAST models”
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simulation suite) and a Verilog simulator for the FPGA hardware
running on a different machine over a network [80].

We also formally specified several layers of the protocol, and
generated formatters and assertion checkers from the specifications.
This work has yielded many benefits, both for the Enzian (which
can cover a much wider range of research use-cases, as we show
in Section 5.4 and Section 5.5), and for us as a research group: the
work we did on specification of the protocol layers has become a
research line in its own right.

4.2 Baseboard Management Controller
Another challenge in building Enzian was managing power, clock,
and temperature on the board itself. A significant engineering task
for us was writing all the board firmware for Enzian.

Nearly all modern servers include hidden processors known as
BMCs whose purpose is to control power and clock distribution
for all components on the board. Far from being a simple Complex
Programmable Logic Device (CPLD) or microcontroller, these pro-
cessors often run a full operating system such as Linux orMinix [72].
The research community has paid very little attention to rigorously
engineering hardware and software for BMCs in spite of the fact
that the BMC has nearly complete control over the server, is con-
nected to the network, and is unaccountable to the host operating
system, CPU firmware, or hypervisor.

The Enzian BMC is an off-the-shelf Xilinx Zynq 7000 [18]-based
System-on-Module (SoM), currently running OpenBMC [23] over
embedded Linux. It provides more than a powerful, modern in-
terface for controlling the server board. The addition of an FPGA
on the BMC not only allowed for reconfiguration and rerouting
of signals during the development process, but is an avenue for
exploring reliable, real-time, reconfigurable baseboard controllers.
The BMC is powered on whenever the case PSU is plugged in and
has its own gigabit Ethernet interface and USB Type-A port.

The firmware running on the BMC needs to control all voltage
regulators and clock generators correctly and turn them on and off
in the right order. Although the regulators on Enzian came with
fairly good datasheets, we had to learn much about how the power
and clock distribution hardware works by trial and error, with
nothing more than an oscilloscope for debugging. Experiments
had to be conducted very carefully as mistakes in a regulator’s
configuration could trigger a short circuit on a high current (over
150 Amps) line and fatally damage one of the few board prototypes
existing at the time. This was particularly challenging during the
COVID-19 pandemic, with almost all of the team working remotely
and coordinating via chat and video conferencing.

This challenge in implementing the firmware started another
research direction in verifiable BMC design. Given the precise
thresholds and sequencing requirements of the system components,
finding a correct sequence and configuration for the 25 regulators
requires non-trivial engineering. To bring assurance to this process,
we developed a technique of declarative power sequencing in which
powering requirements are specified, and then a solver is used to
generate a provably correct sequence [60].

However, this is only one portion of the stack. Further research
has gone into a verified, modular Inter-Integrated Circuit (I2C)
stack [27], and an ongoing effort looks to port sel4 [35] to the BMC,

giving a verified, secure base from which to build our trustworthy
and high-assurance control software.

Implementing the firmware ourselves allows us to make exten-
sive instrumentation of Enzian available to users. Unlike in a regular
server, the BMC is also wide open for use in experimentation (sub-
ject to the above caveats). In particular, it can export information
from all the various voltage, current, and thermal sensors in the
system over a network without impacting the main CPU.

4.3 Instrumentation
Modern computer platforms require a large number of discrete
voltage rails, often with multiple voltages required for a single com-
ponent. For example, a CPU may require three separate voltage
domains [5] while each channel of DDR4 DRAM requires two [46].
This means that for a basic two socket server system, there are
a minimum of 14 required voltage regulators. This essential con-
trol network introduces significant complexity in design, test, and
operation, but can provide a unique opportunity for researchers:
fine-grained control and power measurements of the numerous
subsystems.

Enzian has 25 discrete voltage regulators supplying 30 voltage
rails, each of which can be controlled and queried for some combina-
tion of voltage, current, and temperature. The majority of regulators
are controlled via Power Management Bus (PMBus) [69], a superset
of System Management Bus (SMBus) [68], which is in turn built
on I2C [61], a widely-used low-speed serial communication stan-
dard. Each regulator can be independently controlled or queried in
approximately 5 ms.

As well as being essential for us when trying to bring of Enzian,
the ability to independently monitor and control voltage regulators
at fine granularity makes Enzian a worthy experimental platform
for examining the undervolt behavior of FPGAs [59], CPUs [71],
and DRAM [12]. Detailed power measurements coupled with appli-
cation and CPU performance metrics can be used to develop models
for power-aware resource scheduling and allocation. In Section 5.5
we show the BMC’s capabilities for monitoring the power regula-
tors on the board under a multi-phase diagnostic and stress-test
workload.

4.4 Boot Sequence and System Software
The Enzian power-on sequence mostly follows that of a commercial
server, with a few variations. The BMC powers up and boots, and
then turns on power and clock to the rest of the system including
FPGA and the CPU, which is held in reset. It then loads the FPGA
with an initial bitstream, for example, the static component of a
“shell” like Coyote [38]. It then takes the CPU out of reset.

The CPU loads the BDK which, in turn, loads the ARM Trusted
Firmware (ATF) [55] and UEFI environment. The BDK is interesting
in that it allows extensive configuration of the CPU and associated
hardware. For example, the BDK is responsible for bringing up
the ECI protocol, and can be used to limit bandwidth, number of
lanes, or clock frequency to many parts of the system (indeed, early
debugging of ECI was done with 4 lanes rather than the full 24).
This degree of control is also useful for “scaling” the performance
of some parts of the system, in order to simulate a platform with
different performance characteristics.
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Figure 5: The Enzian rear panel

From UEFI, the CPU can boot Linux. No modifications were
necessary to the Linux kernel, but Enzian requires a special Device-
Tree [20, 41] specification since, of the two NUMA nodes, only one
actually has CPU cores and the other may or may not appear to
have memory. We currently use stock Ubuntu 20.04 LTS, which
conveniently has drivers for most of the CPU devices, including
the 40 Gb/s NICs.

4.5 FPGA “Shell”
Programmable FPGA-based systems typically load a “shell” or
“donut” at startup, and then partially reconfigure the rest of the
FPGA with the desired application(s). Enzian follows this pattern:
the BMC loads an initial image into the FPGA, but Enzian’s open
nature allows this image to be user-specified.

To enable ECI, the initial imagemust exist on the FPGA before the
CPU starts to boot, since CPU firmware attempts to detect the other
NUMA node, train the links, etc. at startup. All the shells we use
for Enzian therefore include the lower levels of ECI functionality.

Beyond that, however, Enzian offers a wide range of possibilities.
Our default environment is a port of the open-source Coyote [38]
shell. This allows the rest of the FPGA to be dynamically reconfig-
ured by the CPU over ECI. Moreover, it provides a kernel of basic
functionality (memory protection, address translation, spatial and
temporal multiplexing, and a standard execution environment) plus
additional services (virtualized DRAM controllers, network stacks,
etc.) to applications each running in a Virtual FPGA (vFPGA).

Porting Coyote to Enzian was relatively straightforward, mainly
replacing the PCIe DMA-based interface between the FPGA and
CPU with one using ECI and dealing in cache lines rather than PCIe
transactions. Other minor changes are due to the different Enzian
pinout, and the presence of more Ethernet interfaces and DDR4
memory controllers than Coyote’s original Alveo platform.

However, for the range of research use-cases we target, Coyote
is most certainly not a panacea. For example, Enzian can be used to
build custommemory controllers providing coherent “logical views”
of DRAM to the CPU’s cache, allowing applications with sparse
but predictable access patterns to pack data structures densely into
cache lines (as we show in Section 5.4), or for cache coherence
to be extended across a network fabric. We also see Enzian as an
attractive environment for exploring the design of alternative OSes
for FPGAs in hybrid systems.

4.6 The Complete Board
A working Enzian system is shown in Figure 1. It is a standard
EATX-format (305 × 330 mm) board which fits in a 2U rackmount

case with a PMBus-enabled 1200 kWCRPS redundant power supply.
The 6 QSFP-28 cages are presented on a standard ATX rear panel.
Half-height PCIe cards fit in a standard 2U case, and full-height
cards can be used via a PCIe riser. While we specified the board in
considerable detail (including most of the components), we lacked
the expertise in PCB design and signal integrity to design and build
a large, 18-layer board with 15 GHz signals, and so this part together
with board assembly was outsourced to a company, Dream Chip
Technologies GmbH.

Building our own system for research allowed us to expose func-
tionality that would often be hard to access in a regular machine.
For example, Enzian has a number of serial consoles or UARTs: two
from the CPU SoC, one from the FPGA, and one from the BMC
processor. Since our BMC is overengineered, we used the Zynq’s
FPGA to route all four to a serial-to-USB converter connected to
a USB type-B socket on the board (see Figure 5). This means an
Enzian board can be plugged into a PC with a regular USB cable
and an OS developer can access all four serial consoles without
additional hardware, a feature that (with the BMC Ethernet) proved
indispensable for doing software bringup during COVID lockdown.

Similarly, each of the primary components (CPU, FPGA, and
BMC) have a JTAG port, a standard interface for debugging, testing,
and reflashing. These are multiplexed and passed to a Digilent
JTAG-to-USB converter for output via another USB type-B socket.
Because all daisy-chained JTAG devices must be powered for the
chain to work, we also provide bypass and external pinouts for
obtaining individual JTAG interfaces.

For thermal management, each socket has a large fanned heat-
sink with 4 additional ports for case fans. To facilitate low-level
debugging, the power rails have indicator LEDs and test-points with
silk-screened identification on the board. There are also two banks
of user-definable DIP switches, and banks of LEDs controllable
from either CPU or BMC.

5 EVALUATION
Our evaluation of Enzian is intended to determine whether it
achieves its goal: to be a realistic general-purpose platform for
heterogeneous systems research. To do so, Enzian must have sim-
ilar performance to commercial systems specialized to particular
use-cases, and must support use-cases similar to those proposed
in the systems research literature to date. We start with evaluating
key aspects of Enzian’s performance (cache coherent interconnect
and networking) and then show it can be used to support diverse
use-cases (machine learning accelerators, memory controllers, and
advanced instrumentation).

5.1 Cache Coherent Interconnect
We first compare throughput and latency of Enzian’s ECI with that
of the PCIe links used in commercial FPGA accelerators.

A feature of ECI inherited from the CPU implementation is
that the 24 lanes (each with a theoretical bandwith of 10 Gb/s)
are organized in two links of 12 lanes each. Transactions can in
principle use either of these links, and the load-balancing strategy
used by the CPU when it initiates transactions can be configured
at boot time. For clarity, in this experiment we restrict all traffic on
Enzian to only one of the two ECI links.
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Figure 6: Link performance: ECI (one link) vs. PCIe x16 Gen3

In a real application achieved bandwidth could be up to double
this (theoretically, 30 GiB/s), but in practice will be rather less due
to load-balancing effects. We expect the actual policy for using the
two links will be defined by the developer of the FPGA application.

We benchmark the FPGA reading and writing (using uncached,
coherent, cacheline-sized transactions) over ECI to host (CPU) mem-
ory. We compare Enzian with a Xilinx Alveo u250 data center
card [76] in an Intel Xeon server using 16-lane PCIe Gen3, giving
a maximum theoretical bandwidth of 16 GiB/s per direction. We
measure achieved data throughput and latency for various transfer
sizes, each averaged over 10000 runs.

Figure 6 shows a single ECI comfortably matches the Alveo’s
PCIe performance for large transfers, and this one link has signifi-
cantly higher throughput for transfers under 2 KiB than Alveo’s
PCIe. Perfect balancing across both ECI links would double these
figures for Enzian, but would be hard to achieve in practice.

Read performance for ECI is slightly lower than for writes; we
conjecture that the limiting factor here is the performance of the
ThunderX-1’s L2 cache subsystem, which handles all the transfers
on the CPU side.

Moreover, latency (time to last byte) for ECI is about half that
of PCIe, except for the case of a large transfers over 8 KiB. Note
that all large ECI transfers are simply a sequence of essentially
independent low-latency cache line transactions.

The superior performance of a single ECI link, despite slightly
lower theoretical bandwidth, is due to differences in protocol design.
As a coherence protocol, ECI is optimized for latency of 128-byte
cache line transfers. PCIe, in contrast, is designed for throughput
with an upfront cost to set up a large transfer.

Significantly, however, many real applications require transfer
sizes in the range where ECI is much more efficient than PCIe,
something we confirm in Section 5.3. Superior performance for
cache-line sized transfers is particularly of interest for applications
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Figure 7: FPGA TCP stack performance, Enzian (1 flow) vs.
CPU/Linux kernel stack (1 flow)

that do not resemble GPU computations, for example, prototyping
custom memory controllers as in Section 5.4.

This illustrates some of the advantages that can be gained from
a change of design perspective, unconstrained by attachment to
existing standards. By treating the FPGA as a processor on an equal
footing to the CPU, we can achieve very different performance
tradeoffs that can significantly benefit many classes of application.

To give a reasonable upper bound on achievable performance,
we also measured the performance of cache coherence between two
ThunderX-1 processors in a commercial 2-socket NUMA server,
with hardware load-balancing across both links. We saw 19 GiB/s of
achievable throughput, with a latency of 150ns. This is substantially
lower latency than our ECI implementation, partly due to the lower
clock frequency on the FPGA (300 MHz here), but suggests our
throughput is comparable with the full hardware implementation.

5.2 Network (TCP/IP and RDMA)
An important feature of Enzian is its powerful network capability.
We now explore the performance of networking using both TCP/IP
and Remote Direct Memory Access (RDMA) stacks and discuss
Enzian as a realistic platform for emulating a smart NIC, using the
example of a high-performance TCP stack terminated in the FPGA.

We ported an open-source FPGA TCP/IP network stack [63] to
Enzian as a Coyote service, and connected two Enzian machines
through their FPGA-side 100 Gb/s Ethernet links via a conventional
network switch. We compare this via iperf with the performance
we achieve between two Intel Xeon Gold 6248 machines connected
using 100 Gb/s Mellanox NICs.

Figure 7 shows that Enzian can saturate a single 100 Gb/s TCP
connection with an MTU as low as 2 KiB, whereas a modern high-
end machine requires multiple threads and connections to fully
exploit the network link. For clarity, we omit the data for additional
flows in the Xeon/Mellanox configuration; in our experiments, 4
flows are needed using the CPU to saturate the link. The stack used
in Enzian has a single processing pipeline shared between all TCP
connections, and so its performance is independent of the number
of flows [62].
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Next, to explore how Enzian can be used as a smart NIC, we
run an open source, extensible RDMA stack (StRoM [64]) on both
Enzian and a commercial Xilinx Alveo 280 card in an Intel Xeon
server, using the same Mellanox NIC as before as a baseline. We use
a Xilinx VCU118 board to generate RDMA 1-sided copy requests
over a 100 Gb/s Ethernet link.

Figure 8 shows the results of Enzian and the Alveo card accessing
both “Host” (CPU) memory and DDR4 connected directly to the
FPGA (“DRAM”). Note that in the “host” case, RDMA reads and
writes on Enzian traverse ECI and are therefore coherent with the
CPU’s L2 cache.

As the figure shows, the performance of Enzian is highly com-
petitive with both the Alveo and Mellanox platforms, and Enzian
has superior throughput and latency when accessing the 512 GiB
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Figure 9: Gradient boosting decision trees

of DDR4 on the FPGA side. As in Section 5.1, write throughput is
constrained by the use of a single ECI link.

This demonstrates that Enzian is a viable platform for proto-
typing smart NIC functionality. This encompasses a wide range
of current research in Operating Systems, such as FlexNIC [33],
Prism [6], or Dagger [39]. It also shows how Enzian can be used to
implement, e.g., hardware-accelerated key-value stores [40].

Finally, we note that Enzian can also subsume the use-case for
Microsoft Catapult (with equivalent performance) by connecting an
additional networking cable between one of the 100 Gb/s interfaces
on the XCVU9P (clocked at 10 GHz rather than 25 GHz) and one of
the ThunderX-1’s 40 Gb/s NICs.

5.3 PCIe Accelerator-Style Applications
Our first macro benchmark compares Enzian with commercial ac-
celerators running a real-world workload previously published in
the research literature, demonstrating that Enzian can be used in
place of these platforms for such workloads.

We compare Enzian to existing results on inference over gradient
boosting decision tree ensembles [52, 53]. Decision trees [47] are a
popular form of supervised machine learning, and we reproduce
the same experiment reported in the Coyote paper [38], together
with our own results using Enzian.

This workload resembles many used on FPGA accelerators, par-
ticularly in its GPU-derived pattern of loading data from the host
machine, computing on it, and copying the results back to host
memory. Double-buffering is used to overlap data copying and com-
putation, efficiently hiding latency. The design can be deployed as
a single engine or as two parallel engines and we provide results
for both configurations. The workload is primarily compute-bound,
and uses no more than 4 GB/s of bandwidth between the FPGA and
host (CPU-side) memory. We compare the performance of Enzian
by reproducing existing published figures on Amazon F1 and Xil-
inx VCU118 [75] boards, as well as published numbers on Intel’s
HARPv2 platform (Broadwell+Arria in Figure 2 and Figure 3).

Figure 9 shows that for this application, Enzian outperforms all
existing boards. The reason for this is that while the same FPGA is
used in Enzian, F1, and the VCU118 board, Enzian employs the part
variant with the highest speed available (following our principles
of overengineering at the cost of unit price).
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Figure 10: Coherent data reduction pipeline

This is only one workload, and we make no strong claims about
Enzian being faster than commercial solutions for this or other
accelerator-type applications. However, we do conclude that for
fairly conventional use-cases, Enzian is highly competitive with
current PCIe-based accelerators, despite the considerable additional
functionality and flexibility – for example, the larger memory can
be used to perform inference in much larger tree ensembles than
in any currently-available system.

5.4 The FPGA as a Custom Memory Controller
This next experiment demonstrates the suitability of Enzian for
prototyping custommemory controllers, such as PBerry [9], general
physical memory manipulation, e.g., Cache Bleaching [58], as well
as more general near-data processing. We demonstrate offloading a
compute-intensive data reduction task: the colorspace transform
and quantization part of a computer vision pipeline. Exploiting the
cache coherence of the FPGA allows us to realistically explore the
design’s tradeoffs and benefits.

The offload engine uses the pipelined structure shown in Fig-
ure 10. It interacts with the raw coherence protocol packet inter-
faces, receiving refill requests from the CPU’s L2 cache which it
transforms into larger sequential burst reads fromDRAM. The burst
data is then fed to the data reduction module, which performs an
RGB to luminance conversion (RGB2Y) and optionally quantizes to
4 bits per pixel, packing the result into a single cache line which is
then returned to the CPU as a response to the refill request. The
pipeline is this invisible to the CPU beyond an increase in latency.
Loads appear exactly like NUMA-remote L2 refills in a 2-socket
system would.

We evaluate the converter by integrating it into a machine vision
pipeline, which performs RGB2Y followed by a 3×3 gaussian blur.
The blur has roughly 5× the arithmetic intensity of the conversion.
The FPGA is substituted for the soft RGB2Y stage: Pointing the
input of the blur filter at the FPGA-backed addresses rather than
the software output buffer makes the swap. Nothing else needs to be
changed. We then compare the performance of both configurations.

Input data is uncompressed 1024x576 RGB video frames with
8 bits per channel pixels padded to 32 bits, preloaded into FPGA-
side DRAM. We measure throughput in pixels-per-second, and
additionally collect interconnect utilization, memory-dependent
CPU stall cycles, and L1 refills, while varying the number of active
CPU cores from 1 to 48.

Results for all configurations are plotted in Figure 11. Perfor-
mance for the baseline (soft RGB2Y) scales linearly to 48 cores at
33 × 106px/s/core (125 MiB/s raw data).
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Figure 11: Pipeline throughput against active core count

Table 1: Pipeline PMU counts (48 threads)

Reduction None 8bpp 4bpp
Memory stalls per cycle 0.025 0.005 0.005

Cycles per L1 refill (/103) 1.84 5.16 10.50

Enabling hardware RGB2Y increases throughput per core by 33%
with quantization to 4 bits, or 39% without. As can be seen from
the interconnect curves, the increase is due to reduced inter-socket
bandwidth and thus expensive remote L2 refills (each 128-byte
cache line is 32 pixels in the baseline, 128 with hard RGB2Y, and
256 with quantization).

By 8bpp the workload saturates, as the plateauing memory stall
rates in Table 1 show, with no further improvement with a higher
reduction ratio. The 4x data reduction from 32bpp to 8bpp translates
into a 3× reduction in interconnect bandwidth relative to the pre-
viously memory-bound workload, indicating that previously idle
compute cycles are now utilised, corresponding to the observed 39%
throughput increase (1.39/4 ≈ 1/3). The further 2× reduction to
4bpp gives a 2× bandwidth reduction, indicating that the workload
is now compute bound. The slight throughput reduction is likely
due to the increasing L2 refill latency, since we need to read 1 KiB
from DRAM at this point for each cache line).

By referencing the pixels-per-second curves to the bandwidth
axis (scaled to read 4B per pixel i.e. raw size), we see that moving the
RGB2Y step across the interconnect (and thus making the pipeline
compute bound) allows the application to increase its DRAM utili-
sation from 6 to 8 GiB/s.

This experiment demonstrates that Enzian is ideal for prototyp-
ing custom memory controller/near-data processing research. The
open platform permits the replacement of arbitrary components,
and low-level integration with the CPU’s coherency protocol. Real
benchmark code runs in real time exercising user-supplied custom
coherent components on realistically-sized workloads (hundreds
of gigabytes, tens of GB/s). Extensive instrumentation makes it
straightforward to measure and investigate the interaction of tasks
such as data reduction with interconnect and memory bandwidth,
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Figure 12: Power measurements of primary components during a boot, diagnostic, and stress test.

and thus make more realistic predictions about the final perfor-
mance of research ideas actually implemented in silicon.

5.5 Instrumentation
Finally, we show how Enzian can perform fine-grained power mon-
itoring, as one illustration of the benefits mentioned in Section 4.3
of a system with open hardware design and BMC.

We used the BMC to monitor the primary power regulators
for the CPU and FPGA cores and the CPU-side DRAM channels,
sampling each every 20 ms and collecting the data using our dbus-
based telemetry service.

Figure 12 shows a time series of this power data as Enzian boots
(with a power spike as the CPU is powered on), checks DRAM, runs
a series of memory tests on the CPU, and then initiates an FPGA
stress test by switching blocks of flip-flops on every clock cycle.

As can be seen, Enzian allows both high sampling rates and de-
tailed per-domain measurements, allowing researchers to examine,
in real time, the energy performance of hybrid applications and
systems software. In practice, all the power and clock regulators
in the system, together with a dozen temperature sensors, can be
monitored in this way. The smaller FPGA on the BMC can also pro-
vide hardware support for such measurement, facilitating targeted
and precise power and performance research.

6 FURTHER USE-CASES
We expect that the flexibility of Enzian will open up a wide range
of opportunities for research into hybrid systems where an FPGA
efficiently complement the CPU in different ways, beyond those
we have surveyed in Section 5.

Viewing the FPGA as an application accelerator, we have prelim-
inary work on relational database engines that take advantage of
FPGAs as accelerators [2, 32]. These results are often limited by
the PCIe bandwidth on the FPGA, whereas with the much higher
bandwidth of ECI changes the balance between what can be done
on the CPU and on the FPGA changes, especially when the cost
and latency of data movements is reduced.

Similarly, the limited memory capacity on existing commercial
FPGAs is an issue for applications where large data volumes are
involved (such as data analytics and machine learning models),

since the limited storage causes more data movement to and from
the accelerator. With up to a terabyte of DRAM per FPGA, Enzian
applications do not have to resort to host memory for large data sets.
We have initial results for inference on recommendation systems
[31, 79] where the models are large and where Enzian can show
the advantage of keeping all the data in memory accessible to the
FPGA while still consistent with CPU host memory.

We can alternatively view the FPGA as an I/O device. In addition
to a smart NIC, the FPGA side of Enzian can also be used as a smart
programmable storage controller, either with persistent storage
connected via the NVMe connector or PCIe x16 slot, or instead us-
ing the large DRAM to emulate non-volatile memory. This enables
experimentation at high performance with “in-storage” functional-
ity (e.g. [36]) and also hardware support for Tiered Memory [67],
to take but two examples.

Alternatively, the FPGA can function as an instrument for observ-
ing the CPU and its software in real-time. For example, we perform
runtime verification of a combined hardware/software system at
scale with zero overhead, by using the FPGA to process events from
the program trace units on the ThunderX-1 cores, and compiling
temporal logic assertions about the behavior of the hardware, OS,
and application software into reconfigurable logic [17].

In this paper we have focused entirely on single system deploy-
ments. However, the ample bandwidth available suggests a variety
of research projects enabled by a cluster of Enzian boards connected
by a high-performance interconnect. There need not be Ethernet-
based either: the 4 × 100 Gb/s links (or 16 × 25 Gb/s links) could just
as easily use a novel wire protocol instead, perhaps more tailored
to a programmable switch like Tofino [28].

To take one example, we have recent work on smart disaggre-
gated memory [37] where the DRAM of the FPGA is made available
as network attached memory and accessible either through RDMA,
or on Enzian by extending the cache coherency protocol via a
“bridge” implemented on the FPGA.

This disaggregated memory can be used, for example, as a data-
base buffer cache with operator off-loading and push down directly
to the memory. As set of Enzian nodes can be integrated into a
cluster offering terabytes of network-attached DRAM with ample



Enzian: An Open, General, CPU/FPGA Platform for Systems Software Research ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

network bandwidth to explore how application designs much less
constrained by the limits of currently available hardware.

A final valuable feature of Enzian is simply the insight it gives
into the way that modern servers are constructed, and the chal-
lenges this poses.

As discussed in Section 4.2, we are porting the sel4 microker-
nel [35] to the BMC. This would allow for the critical control stack
to be implemented in a verifiable manner on a verified base, and
non-critical components to be placed in a virtualized instance of
OpenBMC [16]. Creating a correct SMBus/PMBus/I2C stack is an-
other area of research, building up a modular, model-checked I2C
implementation [27]. Adding a correct sequence [60] and gener-
ated device drivers (possibly in the FPGA itself) would allow for a
completely verified stack of control software, eliminating not only
bugs, but significant effort by engineers.

More broadly, it has been a long time since the systems software
research community has had complete full-stack access to a modern,
performant server. As we discovered, programming a completely
open modern server platform like Enzian radically changes one’s
perspective on operating systems and server hardware.

7 DISCUSSION AND CONCLUSION
As shown by the examples throughout the paper, Enzian provides
ample coverage of the hardware design space for prototyping and re-
search on hybrid systems. It is overprovisioned, feature-rich, highly
instrumented, and easily reconfigured from a software perspective.
Since it is designed as a research platform rather than a commercial
product, it not only provides an attractive application development
platform itself, but can also be used to prototype potential future
hardware in a realistic operating system setting. Moreover, it can
be used to conduct experiments and instrument software in ways
not possible on existing platforms.

At this point, the question naturally arises as to the useful lifetime
of Enzian as a platform. It took us longer than we expected to get
Enzian to its current state, and it will take longer before it becomes
widely available to the research community. There is a real risk that
it will be obsolete by the time this happens.

Our position on this has two aspects. First, as we have shown in
this paper, Enzian remains at time of publication highly competitive
with, and in many cases superior to, leading-edge available com-
mercial hardware. The ThunderX-1 processor is today by no means
state-of-the-art, but remains viable in a mid-range server, and the
Xilinx XCVU9P remains very large by industry standards. Indeed, a
noticeable trend in FPGAs is to incorporate more specialized “hard
IP” functionality at the expense of reconfigurable logic, suggesting
that the CPU/FPGA combination in Enzian, and its performance
tradeoffs, will be relevant for some time to come.

Secondly, Enzian provides for the first time to the academic re-
search community a fully open design for a complete server system.
Ideas conceived, designed, implemented, and validated using En-
zian are highly likely to be applicable to later hardware platforms,
and Enzian provides an environment for experimenting with, for
example, high-assurance board firmware that is unavailable else-
where. The insight we gained into how a modern server is built
today (with or without an FPGA) and the lurking problems therein

have strongly influenced our current research directions, and we
expect will do the same for others.

We noted in Section 3 that we had deprioritized unit cost in favor
of overengineering and reducing design cost. However, while En-
zian differs considerably from a regular server, the bill of materials
is not too different. The unit cost of any 2-socket server is domi-
nated by the DRAM and CPUs (including the FPGA in our case).
The somewhat surprising consequence is that, given favorable pric-
ing on the FPGA, an Enzian board only costs a small amount more
than a regular 2-socket server with similar memory capacity.

At the time of writing, there are 9 working Enzian systems.
We use them for our research, and also have active collaborations
with other universities. Our goal is to make many more available
(including for artifact evaluation), either remotely accessible or sold
at cost in partnership with a hardware or systems vendor (as with
the NetFPGA project [48]). All hardware design files have been
open-sourced [22]. We also intend to open-source related software
as much as possible.

We built Enzian to provide ourselves, and others in the systems
research community, with a better platform for system software
research. Thinking longer-term, Enzian is also a means for systems
researchers to engage more fully with the hardware configuration
and architecture, providing insights that are sometimes lacking
in hardware design [45]. We might speculate further that, in the
long term, if hybrid CPU/FPGA platforms are here to stay, then
the current diversity of designs (with the associated problems we
discussed in Section 2) is transitory, and a consensus will emerge
on a single architectural pattern that is “good enough” for almost
all applications, as happened with the horizontalization of the PC
as a universal platform for server computing. We make no claim
that Enzian is such a platform, but its design principles point in
that direction.
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A ARTIFACT APPENDIX
A.1 Abstract
The submitted artifact consists of two major parts: the complete col-
lection of board design files necessary for manufacturing an Enzian
[22], and all bitstreams and benchmarks necessary to reproduce
the evaluation results presented in Section 5 of the paper [21]. This
artifact includes a detailed guide for booting and programming the
machines. While the authors encourage other research groups to
make use of the CAD documents to build new and better Enzians,

https://enzian.systems
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given the limited time and money available for artifact evaluation,
we advise reviewers not to attempt to manufacture their own En-
zians, and instead to proceed with the second artifact, found at
Zenodo [21]. The provided bitstreams and benchmarks will allow
reviewers to reproduce all presented evaluation data visualized in
Figures 5, 6, 7, 8, 10, 11 and Table 1.

A.2 Artifact Check-List (Meta-Information)
• Program: All: Linux (tested Ubuntu 20.04), provided custom
kernel modules, 5.4: ffmpeg

• Compilation: gcc (tested 9.3.0), Xilinx Vivado (version 2020.1)
• Binary: 5.1-5.5 each have one or more Vivado-generated bit-
streams

• Hardware: 5.1, 5.3-5.5: one Enzian, 5.2: two Enzians connected
with 100G Ethernet cable

• Run-time state: The bitstreamsmust be loaded before booting
Linux

• Metrics: memory throughput, latency, tuples/s, pixel/s, stall
cycles, instruction retired, cycles, L1 refills, current, voltage

• Output: 5.1-5.3: collected data is presented in human-readable
log files, 5.4-5.5: data is presented with scripts for processing
into plots

• Experiments: 5.1: microbenchmarks, 5.2: TCP/IP, RDMA per-
formance, 5.3: decision trees, 5.4: custom memory controller
for video encoding, 5.5: power instrumentation

• How much disk space required (approximately)?: 600 MB for
software and bitstreams

• How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes per experiment for loading bitstream
and booting machine

• How much time is needed to complete experiments (approxi-
mately)?: 5.4 may take 3-4 hours per configuration (3 in total)
while the remaining experiments should take on average ap-
proximately 10 minutes per loaded bitstream

• Publicly available?: Yes
• Code licenses (if publicly available)?: Creative Commons At-
tribution 4.0 International

• Archived (provide DOI)?: Design files: 20.500.11850/517619,
Bitstreams and benchmarks: 10.5281/zenodo.5729175

A.3 Description
A.3.1 How to Access. The primary artifact, the design files of the
system itself, can be found in the ETH Research Collection [22]. The
bitstreams and benchmarks used for reproducing the data presented
in the paper can be found on Zenodo [21].

A.3.2 Hardware Dependencies. All experiments must be run on
one or more Enzian machines. As the authors are in possession of
all nine extant Enzians, reviewers will have to program and access
the machines via ssh through our gateway. There are unpublished
comparative results presented in the paper that use one or two
Xilinx Alveo U280 cards. The XACC-ETHZ cluster (https://xilinx.g
ithub.io/xacc/) can be used to reproduce this data.

A.3.3 Software Dependencies. Xilinx Vivado (2020.1) is required
for loading the necessary bitstreams, however the entire toolchain
is available on the gateway machine used for accessing the Enzian
cluster.

A.4 Installation
All of the necessary software will be installed on all Enzian ma-
chines. The bitstreams will be available on the gateway server
that contain the Vivado toolchain necessary for programming the
FPGAs. If reviewers would like to install the artifact, it can be
unzipped into the user’s home directory and specific details of nec-
essary scripts and benchmarks are in the README.md files in their
respective directories.

A.5 Experiment Workflow
All experiments follow a similiar initialization procedure, outlined
in detail in the Enzian Quickstart Guide found in the root direc-
tory of the artifact. Moreover, detailed instructions for running
each experiment are included in the README.md included in each
experimental directory. The basic outline of the workflow is as
follows:

(1) From the gateway server, take the BMC and CPU consoles
of the machine under test using the commands console
zuestollXX-bmc and console zuestollXX-console, re-
spectively.

(2) From the BMC power manager, power on the PSU using
common_power_up().

(3) Power on the CPU using cpu_power_up().
(4) On the CPU console, the BDK boot menu will appear. Break

the boot by pressing B.
(5) From the gateway server, program the bitstream for the

experiment using the included tcl script.
(6) When the bitstream is programmed, the CPU boot process

can resume, bringing the ECI link up, and then booting into
Linux.

Experiments 5.1, 5,2, 5.3, and 5.4 require the bitstream to be
programmed, the ECI link to come up, and the CPU to boot into
Linux. 5.5 does not make use of ECI and all CPU activities are
initiated from the BDK.

A.6 Evaluation and Expected Results
A.6.1 Microbenchmarks (Section 5.1). The microbenchmarks mea-
sure the throughput and latency of a single ECI link for both reads
(CPU to FPGA) and writes (FPGA to CPU) and compares with those
of PCIe x16 Gen3 interconnect. Two sets of software and bitstream
are available to compare performance. The ECI performance can
be measured by programming the provided bitstream and running
the software on an Enzian machine. It can be compared with the
performance of PCIe by programming the corresponding bitstream
on an Alveo card and running its software. Detailed instructions
along with the results used in the paper are in the README.md file.

A.6.2 Network Performance (Section 5.2). These experiments eval-
uate two network benchmarks, an TCP/IP FPGA stack, and RDMA.

For the TCP/IP experiment, two enzian FPGAs are connected
to a 100 Gbps switch. One FPGA is the server and another is the
client. We perform a ping-pong experiment between two FPGAs
with the client sending a pre-defined amount of data to the server.
Once the expected amount of data is received, the server sends back
the same amount of data back to the client. The single trip data
transfer latency is measured as the half of the total transfer latency.

https://xilinx.github.io/xacc/
https://xilinx.github.io/xacc/
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RDMA measurements can be taken between two Enzian boards
and two Alveo cards. In the case of Enzians, the memory being
accessed is over ECI (CPU DRAM) while the Alveo case accesses
memory directly attached to the FPGA.

A.6.3 Decision Trees (Section 5.3). The experiment performs gra-
dient boosting decision tree inference on a given model in three
steps. The first step is offloading the model and is not part of mea-
surements. The second step is inference where data is offloaded in
a streaming fashion into a pipeline where, as the third step, results
are computed and written back to the host memory. The experiment
uses 64KB of tuples to hit saturation point.

A.6.4 Custom Memory Controller (Section 5.4). The series of exper-
iments in this section evaluates the use case of Enzian as a custom
memory controller for video processing. The application has RGB
data stored in the FPGA memory and performs RGB to luminance
conversion, blur and edge detect (optional). The RGB to luminance
conversion can be offloaded to the FPGA where the FPGA can
provide luminance either at 8bits per pixel or 4 bits per pixel. By
quantizing data, packing them and providing the luminance “view”
to the CPU, the FPGA effectively reduces the number of memory
operations that need to be performed by the CPU.

There are three experiments in this section:
• RGBA - No processing on the FPGA, CPU reads RGB data
from FPGA memory and performs all operations.

• Y8 - FPGA converts RGB data to 8bit luminance per pixel
and provides it to the CPU. The CPU performs rest of the
operations.

• Y4 - FPGA converts RGB data to 4bit luminance per pixel
and provides it to the CPU. The CPU performs rest of the
operations.

Each experiment has a separate bitstream that has to be pro-
grammed onto the FPGA to run the experiment. Once the FPGA is
programmed, the application can be launched on CPU to collect per-
formance numbers and reproduce graphs. Each experiment takes
approximately 3 hours to complete and detailed instructions are
provided in the README.md in the experiment directory. The logs
for results used in the paper are available along with the artifacts.

A.6.5 Power Instrumentation (Section 5.5). In the experiment we
log measurements of various subsystem regulators, run varied di-
agnostic and stress tests, and use the current data in order to cal-
culate the power consumed. A subset of measurements can be
collected in a log at 10 ms intervals, or manually measured using
the print_current_all() from the BMC power manager.

A.7 Notes
When using the BMC, please only use commands found in the
instructions above and in the Quickstart Guide.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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