
Bachelor’s Thesis Nr. 454b

Systems Group, Department of Computer Science, ETH Zurich

Trusted Firmware for a Research Computer

by

Alessandro Legnani

Supervised by

Daniel Schwyn
Prof. Dr. Timothy Roscoe

February 2023 – August 2023

Abstract

Firmware plays a crucial role in the boot process of every computer. However,
firmware stacks often suffer from issues related to their size and complexity,
typically stemming from years of patchwork to support new platforms or fix
bugs.

This thesis delves into the realm of firmware by rewriting the initial stage
of the firmware stack of the Enzian research computer. The emphasis of this
study is on understanding and optimizing the steps required for the successful
initialization of Dynamic Random Access Memory (DRAM) in contemporary
systems.

Through the process of rewriting, this work demonstrates that dedicated
efforts can yield remarkable results. The effort invested in this endeavor has led
to a substantial reduction in the size of the code base. This improvement has
not only made the code base more manageable for research teams but has also
yielded enhanced performance metrics, such as boot time. These findings un-
derscore the practical impact of focused firmware development and the tangible
benefits it can deliver.

Acknowledgements

I am grateful for the assistance and support of several individuals who played a
crucial role in the completion of this thesis. I extend my heartfelt gratitude to
Prof. Dr. Roscoe for his instrumental role in making this project possible.

I would also like to express my appreciation to my supervisor, Daniel Schwyn,
for dedicating substantial time and effort to guide me through the research pro-
cess. Your expertise and insightful feedback have been instrumental in shaping
the direction of this thesis.

Furthermore, I want to extend my sincere gratitude to Dr. Cock for his
invaluable contribution. The foundational code he authored formed the basis of
this thesis, especially the work presented in Section 3.6, 3.8, and 4.3.1.

My family and girlfriend deserve special thanks for their constant support,
proofreading assistance, and helping me overcome my try-to-undestand-DRAM-
initialization-induced delirium.

Contents

1 Introduction 4

2 Background and Motivation 7
2.1 Enzian . 7
2.2 Bring-up and Diagnostics Kit (BDK) 7
2.3 Arm Trusted Firmware (ATF) 7

2.3.1 ARM’s Exception Levels 8
2.3.2 Arm’s Downcalls . 8
2.3.3 Boot Loader Stages . 9
2.3.4 ATF Components and Libraries 10

2.4 Board Management Computer (BMC) 11
2.5 Enzian Firmware Resource Interface (EFRI) 11
2.6 Dynamic Random Access Memory (DRAM) 12

2.6.1 Organization of DRAM 12
2.6.2 DRAM Registers . 13
2.6.3 Memory Refresh . 13
2.6.4 ZQ Calibration . 14
2.6.5 Clock and Strobe . 14
2.6.6 Read & Write Centering 14
2.6.7 Different DDR4 Topologies 15
2.6.8 Write & Read Leveling . 16
2.6.9 Vref Training . 17

3 Implementation of the ATF port 19
3.1 Assessment of the old firmware stack 19

3.1.1 What can be improved . 20
3.2 Boot Procedure . 20
3.3 SPI Flash Memory layout . 21
3.4 The ThunderX’s scratchpad . 21
3.5 Shared behavior of BL stages . 23
3.6 UART and console initialization 23
3.7 Timer initialization (GTI) . 24
3.8 Serial Presence Detect (SPD) . 24
3.9 Memory Layout of Enzian . 25

3.9.1 Partition into Secure and Non-Secure DRAM 25
3.9.2 MMU - Memory Management Unit 25
3.9.3 Design decision regarding the memory layout 27
3.9.4 Further space optimizations 28

3.10 Loading next stages from the SPI flash 28
3.10.1 Firmware Image Package (FIP) 28
3.10.2 Storage abstraction layer setup 28

3.11 Generic Interrupt Controller (GIC) 29
3.12 Power State Coordination Interface (PSCI) 30

1

4 Memory controller and DRAM initialization 31
4.1 Overview . 31
4.2 Topology of the LMCs . 32
4.3 LMC Initialization Sequence . 32

4.3.1 Steps 1 through 6 . 33
4.4 Step 7: Early LMC Initialization 33
4.5 Steps 9 through 11 . 33
4.6 Testing the LMCs . 34

4.6.1 LMC and bank selection algorithm 34
4.6.2 Testing methodology . 34

4.7 Step 12: Write-Leveling . 35
4.8 Step 13: Read-Leveling . 36
4.9 Step 14: Vref Training . 36
4.10 Training Algorithms . 37

4.10.1 1st Algorithm . 37
4.10.2 2nd Algorithm . 37
4.10.3 3rd Algorithm . 39
4.10.4 4th Algorithm . 41
4.10.5 Takeaways and future work 41

5 Configuration of the Enzian 42
5.1 Implementation of BMC-side EFRI backends 42
5.2 Configuration of DRAM parameters using EFRI 43
5.3 EFRI as an EL3 service . 44
5.4 Modifications to the ATF-side . 45
5.5 Future work and improvements 45

6 Evaluation 47
6.1 Firmware Size . 47
6.2 EFRI performance . 47
6.3 Time to UEFI . 48
6.4 DRAM latency and bandwidth 49
6.5 Code base comparison . 50

7 Future work 52
7.1 DRAM initialization . 52
7.2 Extensive testing in Linux . 52
7.3 Reset behaviour . 52
7.4 PSCI implementation . 53

8 Conclusion 54

9 Appendix 55
9.1 Updating ATF . 55
9.2 Building and flashing the ATF 55

9.2.1 Manually building the ATF 55

2

9.2.2 Flashing an EBB . 56
9.2.3 Flashing an Enzian . 56

9.3 Using EFRI on an Enzian . 56
9.4 Debugging an EBB using JTAG 56
9.5 Code base measurements . 57
9.6 Summary of the Capabilities and Limitations of the new ATF . . 58

3

1 Introduction

Modern computer systems have become increasingly complex and sophisticated.
This is the case even before the operating system starts executing, when booting
the system. The crucial component that performs the initial stages of system
initialization is the firmware.

The booting process of a contemporary system is no longer the straightfor-
ward sequence it once was. Rather, it has morphed into an intricate dance, at-
tempting to adhere to various historical standards while accommodating newer
ones, often leading to a convoluted and cumbersome firmware stack. As a
consequence, duplication of initialization code has become rampant, needlessly
increasing the firmware’s size and hindering the potential for optimized and
streamlined boot sequences.

Furthermore, the current state of firmware implementations is the culmina-
tion of years of patchwork, necessitated by the need to support a wide array of
different and/or outdated hardware platforms. Over time, as new technologies
emerged and older ones persisted, firmware developers faced the challenge of
accommodating divergent standards, resulting in a fragmented firmware stack
that intertwines various initialization routines, often leading to redundancy and
complexity.

In the case of Enzian [Cock et al., 2022], at power-on, the Baseboard Man-
agement Controller (BMC) initializes the various hardware components of the
system (power controllers, clock distribution, etc.) and takes the CPU out of
reset. As per the Arm convention only the first core starts executing code from
the boot ROM and enters a set of initialization functions.

Before this thesis these were provided in the Bring-up and Diagnostics Kit(BDK)
from the SoC’s manufacturer. The BDK would, most importantly, initialize the
DRAM and other subsystems like the UART. The boot flow then continues
with the Arm Trusted Firmware (ATF) [Arm, 2023] that has the following ma-
jor functions:

• Finish initializing the rest of the system hardware.

• Install the secure system monitor, which is code running at EL3, the
most privileged execution mode available on the processor, and providing
services to the OS code through traps at runtime called Secure Monitor
Calls (SMC).

• Execute the next stage of the boot process, which is the Unified Extensible
Firmware Interface (UEFI) firmware.

This approach at booting the system is working, but it is less than ideal as
it faces the following four issues:

• Outdated ATF: The firmware relies on an older and unknown version of
the ATF, which needs to be updated to leverage the latest features and
improvements offered by the reference Arm Trusted Firmware.

4

• Proprietary Hardware Initialization: Parts of the hardware initialization,
like for the DRAM and the UART consoles, is done by the BDK. This
code is both proprietary and lacks any version control information. This,
in turn, poses a challenge in terms of maintainability and restricts the
openness of the platform.

• Duplicated Initialization Code: The initialization code found in the BDK,
ATF and UEFI are either duplicated or split between these three stages.
One example is PCIE: part of the initialization is done in the BDK, whilst
the rest is done in UEFI.

• Bloated and Convoluted Code Base: The firmware stack for Enzian suffers
from a large and complex code base, resulting from the accumulation of
patchwork over time to support various hardware platforms and standards.
This complexity hinders maintainability, makes it challenging to identify
and fix issues.

Figure 1: Diagram of both the old and new firmware stacks.

The ultimate goal of this project is to consolidate the separate initialization
programs into a unified firmware solution, shown in Figure 1, and bring it up
to date with the latest version of the reference ARM Trusted Firmware.

Notably, the most significant obstacle has arisen during the DRAM initial-
ization procedure, which subsequently takes center stage in this thesis. This uni-
fication will enhance maintainability and optimize performance (see Section 6).
As Enzian’s strength lies in its reconfigurability the ability to make software

5

modifications for diverse hardware setups should be made as straightforward as
possible for all involved parties.

6

2 Background and Motivation

2.1 Enzian

Enzian is a cache-coherent 2-node asymmetric NUMA system where one node is
a 48-core Cavium ThunderX[Cavium, 2017] CPU and the other node is a Xilinx
FPGA. The two nodes have access to 128 GB and up to 1 TB of DDR4 memory
respectively. The Enzian Coherent Interconnect (ECI) connects the two nodes.
It is based on the cache coherence protocol of the ThunderX processor and the
FPGA emulates the coherence protocol, as if it were another ThunderX.

2.2 Bring-up and Diagnostics Kit (BDK)

The Bring-up and Diagnostic Kit (BDK), provided by Cavium, serves as the first
stage bootloader for the Enzian project. It combines a BIOS-like configuration
and a first-stage bootloader that can boot different images, such as UEFI.

Additionally, the BDK includes a unique diagnostic tool, featuring a full Lua
shell, to aid in troubleshooting and diagnostics. However, the BDK has some
significant drawbacks that need to be addressed for optimal performance and
maintainability within the Enzian project:

• Big code size: The BDK has a substantial codebase, which can lead to
unnecessary resource consumption and complexity.

• Duplicate functionality: Some functionalities within the BDK overlap with
tasks that should ideally be handled by the UEFI, causing duplication and
inefficiency in the boot process.

• Clunky boot process: The boot process with the BDK is not as streamlined
as desired. Changing a setting, like the DRAM speed grade, requires the
user to interrupt the boot process via a specific key, navigate the different
menus with the command line, change the settings and save them, before
continuing the boot flow.

• Support for multiple platforms: The BDK supports multiple platforms
beyond the ThunderX processor, which adds complexity and complicates
maintenance efforts.

• Proprietary nature: The whole BDK is proprietary, limiting the openness
of the Enzian platform.

• Patchwork solutions: The BDK incorporates patched solutions to make
the ThunderX work as part of the Enzian system, leading to potential
complications and maintenance challenges.

2.3 Arm Trusted Firmware (ATF)

The ARM Trusted Firmware (ATF) [Arm, 2023] is an open-source firmware
project developed by the ARM Foundation. It serves as a standardized firmware

7

implementation for the ARM platform. ATF’s primary purpose is to facilitate
the boot process and system initialization of ARM-based platforms. It provides
a reliable and extensible firmware solution that supports the proper functioning
of the hardware and software components within the system.

The ATF consists of several firmware components each responsible for spe-
cific tasks related to bootstrapping and initialization. Therefore, they need to
run at different privilege levels.

2.3.1 ARM’s Exception Levels

In ARM-based systems privilege levels are called Exception Levels [Arm, 2022].
There are 4 exception levels from EL0 to EL3. Additionally EL0, EL1 and EL2
are split into secure and non-secure as shown in Figure 2.
This distinction between non-secure and secure is a feature of ARM Trustzone,
whereas there exist two different worlds, secure and non-secure, that are hard-
ware separated. Code running in secure mode (or EL3) can access both worlds,
whilst non-secure code can only access the non-secure world. This partitioning
is used in order to increase the security of services handling authentication or
cryptography. By performing a trusted boot and running a trusted OS a root
of trust can be established called the Trusted Execution Environment (TEE).

As Enzian is meant as a system to be experimented upon these security
measures currently are not used. The architecture does not specify at which
level different software should run, but a common usage model is the following:

• EL3: Firmware and Secure Monitor

• EL2: Hypervisor

• EL1: OS kernel

• EL0: User code

2.3.2 Arm’s Downcalls

Within the ARM architecture, the establishment of communication channels
across different exception levels is facilitated through three distinct downcall
mechanisms [Arm, 2017]:

• SuperVisor Calls (SVC): SVC downcalls enable communication from the
Application code executing at EL0 to the Operating System kernel exe-
cuting at EL1. This mechanism permits controlled transitions from user-
mode applications to the kernel, enabling privileged operations and inter-
actions with system resources.

• HyperVisor Calls (HVC): HVC downcalls enable communications from
the OS kernel executing at EL1 to the Hypervisor operating at EL2. This
channel allows the OS kernel to interact with the hypervisor, granting ac-
cess to virtualization-related functionalities and facilitating management
of virtualized environments.

8

• Secure Monitor Calls (SMC): SMC downcalls provide a means for com-
munication from the OS kernel executing at EL1 to the Secure Monitor
operating at EL3. This allows the OS kernel to interact with services
provided by the Secure Monitor like power management or, in the case of
the Enzian, communication with the BMC (see Section 2.4) through the
EFRI link (see Section 2.5).

2.3.3 Boot Loader Stages

Figure 2: Different stages of the ATF and their privilege level. The red arrows
indicate the flow of execution.

As mentioned before the ATF consists of multiple stages, referred to with
the prefix BL (Boot Loader). The exception level at which they run is indicated
in parentheses and the suffix ’S’ or ’N’ stand for secure and non-secure, when
applicable. For a more schematic view see Figure 2.

1. BL1 (EL3) is the initial stage of the Trusted Firmware, implementing the
reset vector from which execution starts after a reset or power on of the
system. The primary responsibility of BL1 is to set up the hardware,
perform basic initialization, and load the next stage of the boot process,
BL2, into memory from non-volatile storage. It either passes control to
the BL2 stage or an optional Firmware Update process (BL2U).

2. BL2 (EL1S) loads the next stages of the boot process, which typically
include BL31, BL32 and BL33. If Trustzone is used BL2 also validates
the authenticity and integrity of the next stages and performs some secure
world specific initialization, before passing control to BL31.

3. BL2U (EL3) is an optional stage that may be included in certain imple-
mentations of the Trusted Firmware for ARM. Its primary function is to
provide the capability to update the BL2 stage itself without the need for
a complete system firmware update.

9

4. BL31 (EL3), also known as the secure monitor, is the part of the firmware
that remains resident during normal execution and handles interrupts or
can be invoked through SMC calls. These can be used to e.g. power off
the system or get telemetry data from the 3.3V voltage rail.

5. BL32 (EL1S) represents the Trusted Operating System in the TEE. It
is loaded and executed after BL31 and provides a secure execution en-
vironment for trusted applications and services. BL32 manages secure
resources, such as cryptographic keys, and ensures isolation between the
trusted and non-trusted parts of the system.

6. BL33 (EL2N) is the final stage of the boot loader and represents the boot
loader for the Normal World (non-secure) software. It is responsible for
loading and launching the non-secure operating system or other non-secure
software components, such as the Unified Extensible Firmware Interface
(UEFI) used by Enzian, which finishes up on platform initialization and
boots the operating system.

2.3.4 ATF Components and Libraries

The ATF framework provides numerous libraries that serve as versatile and
reusable solutions, eliminating the need for rewriting code for each platform
and providing essential functionalities for ARM-based systems.

• XLAT (Translation Library): The XLAT library provides a layer of ab-
straction on top of the Memory Management Unit (MMU) in ARM sys-
tems. By handling memory address translation, XLAT ensures seamless
mapping between virtual and physical addresses, facilitating memory man-
agement. Thanks to its standardization within the ARM architecture,
this library can be utilized across different ARM-based platforms without
modification. This reusability streamlines the development process, as de-
velopers can rely on XLAT to manage memory translation, saving time
and effort while ensuring consistent and optimal memory access in various
ARM systems.

• Storage Abstraction Layer: The storage abstraction layer in the ATF
framework serves as a versatile and general-purpose solution for loading
and parsing the Firmware Image Package (FIP) during system boot. The
FIP consists of a header pointing to different binaries and the binaries
itself. In the Enzian the FIP contains essential firmware components, such
as the BL2, BL31 and BL33. The IO library is designed in a platform-
agnostic manner, making it applicable to a wide range of ARM-based
systems without code modifications. Its reusability ensures seamless and
reliable firmware loading across diverse platforms, providing a consistent
boot process.

• Generic Interrupt Controller (GIC): The GIC is a critical component re-
sponsible for managing interrupts in ARM processors. It handles interrupt

10

requests from various hardware sources and distributes them to the ap-
propriate processing elements within the system. The GIC ensures that
interrupts are delivered in a prioritized and orderly manner, minimizing
latency and enabling timely response to critical events. The presence of a
library to configure and use the GIC within the ATF framework enables
standardized interrupt management across different ARM platforms.

• Power State Coordinator Interface (PSCI): The PSCI is a standardized in-
terface within the ATF framework that facilitates power state coordination
in ARM-based systems. It allows software components to communicate
with the platform’s power management firmware, enabling efficient power
management and dynamic power state transitions. Through the PSCI,
software can request the system to enter various power states, such as
sleep, suspend, or power-off, depending on the system’s operational re-
quirements. The PSCI’s standardized interface ensures that power man-
agement functionality can be seamlessly integrated into different ARM
platforms, enabling developers to write power-aware software that works
consistently across various devices.

In summary, the ARM Trusted Firmware libraries exemplify the benefits of stan-
dardized and reusable solutions. By adhering to the ARM architecture stan-
dards and adopting platform-agnostic designs, these libraries enable seamless
memory management and firmware loading across various ARM-based plat-
forms. This approach significantly streamlines the development process, pro-
motes code consistency and enhances the reliability of ARM systems.

2.4 Board Management Computer (BMC)

A Baseboard Management Controller (BMC) is a critical component found in
modern server computer platforms that plays a pivotal role in the overall sys-
tem management and remote monitoring capabilities. In the Enzian the BMC
is a full fledged computer running OpenBMC, a full Linux distribution, inte-
grated directly into the server’s motherboard, operating independently of the
main CPU. The BMC acts as a dedicated management subsystem, providing
essential functionalities like out-of-band remote access, system monitoring (e.g.
temperature, voltage and fan speeds) and power control even when the main
server is powered off.

2.5 Enzian Firmware Resource Interface (EFRI)

The Enzian Firmware Resource Interface(EFRI)[Xu, 2023] is an RPC-based
protocol for flexible and extensible enumeration and implementation of platform-
level firmware services. This enables us to have a communication link between
the ThunderX and the BMC. EFRI relies on a schema defined in
enzian-efri.yml1 which is used to generate code for the ATF- and BMC-side

1https://gitlab.inf.ethz.ch/PROJECT-Enzian/bmc/enzian-firmware-resource-interface/

-/blob/atf-port/enzian-efri.yml

11

https://gitlab.inf.ethz.ch/PROJECT-Enzian/bmc/enzian-firmware-resource-interface/-/blob/atf-port/enzian-efri.yml
https://gitlab.inf.ethz.ch/PROJECT-Enzian/bmc/enzian-firmware-resource-interface/-/blob/atf-port/enzian-efri.yml

of the implementation from the specification. This can be used to control the
power management of the Enzian board e.g. to power down the CPU or read
configuration options e.g. the speed of the DRAM. EFRI is being used in the
BL1, as part of the DRAM initialization procedure, and in the BL31, where it
is installed as an EL3 service accessible through SMC calls.

2.6 Dynamic Random Access Memory (DRAM)

In modern computer systems, one often takes for granted the availability of Dy-
namic Random-Access Memory (DRAM) as the main memory, providing the
system with fast and volatile storage for data and program execution. DRAM is
composed of tiny capacitors that store binary data as electrical charges, and the
memory cells need to be periodically refreshed to maintain data integrity. While
this design decision has revolutionized computing by offering high-speed, ran-
dom access to data, it also introduces several challenges during the initialization
process.

During DRAM initialization, a series of procedures are executed to ensure
the memory’s proper configuration and functionality. One of the primary chal-
lenges arises from the inherent nature of capacitors in DRAM cells. These
capacitors tend to leak charge over time, leading to data loss if not continuously
refreshed. Additionally, DRAM initialization involves configuring memory tim-
ings, voltage levels, and training algorithms to optimize memory performance
and ensure stability. The process becomes even more intricate as memory tech-
nology advances, incorporating higher densities and faster data rates, requiring
precise tuning to maximize the system’s memory capabilities.

Despite the complexities involved, DRAM initialization remains a crucial
process, as it lays the foundation for reliable and high-performance memory
operations throughout the system’s lifespan. The next sections will go over in
more detail how DRAM works and which steps need to be taken in order to
perform its initialization. As the Enzian system is designed to run with DDR4
memory the following sections will explain the DDR4 specific initialization steps,
though some of it also applies to older and new revisions of the DDR standard.

2.6.1 Organization of DRAM

In modern computer systems DRAM is organized hierarchically to efficiently
store and access data. Understanding this organization is crucial for optimizing
memory performance and capacity. The organization of DRAM involves several
levels, including DIMMs, ranks, banks, chips, and columns:

• DIMMs (Dual In-Line Memory Modules): DIMMs are physical memory
modules that plug into memory slots on the motherboard. Each DIMM
consists of multiple DRAM chips and come in various form factors, such as
UDIMM, RDIMM, LRDIMM, and SO-DIMM, to cater to different system
requirements.

12

• Ranks: Each DIMM can have one or more ranks. A rank is a logical group
of memory chips that share the same data and control signals. Having
multiple ranks on a DIMM allows the memory controller to access multiple
sets of data simultaneously, increasing memory throughput.

• Banks: Inside each rank, the memory is divided into banks. A bank
is a small unit of memory storage that can be accessed independently.
DRAM chips have multiple banks, and each bank contains a portion of
the total memory capacity. When the memory controller requests data
from a specific address, the data is fetched from the corresponding bank.

• Chips (DRAM ICs): Each rank is made up of multiple DRAM Integrated
Circuits (ICs) or chips. These chips are responsible for storing the actual
data in the memory cells. The width of the data being stored can either
be 4, 8 or 16 bits (referred to as x4, x8 or x16). Each chip has its own set
of banks.

• Rows and Columns: Inside each DRAM chip, the memory cells are ar-
ranged in a two-dimensional grid. Data is accessed by specifying a row
and a column address. When the memory controller issues a read or write
command, it specifies the row address to activate the corresponding row
and then the column address to access the desired data from that row.

2.6.2 DRAM Registers

DDR4 memory modules are equipped with a range of internal registers that
are used in memory control, configuration, and performance optimization. Two
registers, in particular, stand out as significant for the scope of this thesis:

• Multi Purpose Registers (MPR): These are 8-bit programmable registers
that store predefined training patterns utilized during data training pro-
cesses. Each memory module has four of these.

• Mode Registers (MR) are used to enable different operating modes of the
DDR4 memory module. A note on notation: MRn<y> will refer to a bit or
a range of bits y of Mode Register n.

2.6.3 Memory Refresh

DRAM cells, as already mentioned, store data as electrical charges on tiny
capacitors. However, these capacitors are not perfectly isolated, leading to
charge leakage over time.

To prevent data loss due to charge leakage, DRAM incorporates external
circuitry, as part of the memory controller, that periodically reads each mem-
ory cell and rewrites its contents, restoring the charge on the capacitors to
their original levels. This process, known as memory refresh, ensures the data’s
integrity over time. During each refresh cycle, a specific portion of memory
cells is refreshed, and the process continues successively until all cells have been

13

refreshed. This sequential approach guarantees that all memory cells receive
regular maintenance, mitigating the risk of data corruption and ensuring the
reliability and stability of DRAM as the main memory in modern computer
systems.

One crucial parameter involved in DRAM refresh is tREFI (Refresh Interval
Time). tREFI determines the time interval between consecutive refresh cycles
and is influenced by factors such as memory tensity and temperature. During
initialization, the memory controller sets the appropriate value for tREFI based
on the memory’s specifications and operational requirements.

2.6.4 ZQ Calibration

In DDR4 modules, each data pin (DQ) serves as a bidirectional channel, respon-
sible for sending data to the memory controller during reads and receiving data
during writes. To ensure reliable data transmission, each DQ pin contains a set
of parallel 240-ohm resistors. However, these resistors can experience fluctua-
tions in resistance due to changes in voltage and temperature. To counteract
this, the circuitry incorporates a DQ calibration control block, along with an ex-
ternal precision 240-ohm resistor that remains stable regardless of temperature
variations.

Periodically the memory controller performs a specific command called ZQCS
(ZQ Calibration Short). This calibration process enables the memory controller
to fine-tune and adjust the impedance of the memory’s output drivers. By opti-
mizing the signaling characteristics through calibration, DDR4 memory achieves
enhanced performance and ensures reliable data communication between the
memory modules and the memory controller. A longer calibration sequence,
ZQCS (ZQ Calibration Long), is performed at initialization.

2.6.5 Clock and Strobe

The clock signal (CLK) provides a consistent timing reference for data transfers
and operations within the memory module. The clock signal oscillates at a
specific frequency, and each clock cycle represents a fixed time interval during
which data can be transferred. Strobes are related to the data lines in DDR4
memory.

Data in DDR4 is transferred on both the rising and falling edges of the clock
signal, which is referred to as ”Double Data Rate”(DDR). Each data signal is
accompanied by a corresponding strobe signal (DQS - Data Strobe). The strobe
signal is aligned with the data and indicates the valid data window, specifying
when the data must be read or written.

2.6.6 Read & Write Centering

The main objective of read centering is to optimize the timing relationship be-
tween the data and strobe signals, ensuring accurate and reliable data sampling
during read operations. During read centering, the memory controller fine-tunes

14

the timing parameters to identify the optimal position for the read data signals
within the valid data window defined by the read strobe, which is called the
data eye. The process involves sending test patterns to the memory module
while iteratively adjusting the read data timing with respect to the strobe. The
memory controller monitors the data response and makes adjustments until
achieving the optimal read data position.

Similarly, the goal of write centering is to align the write data signals withing
the window defined by the write strobe. The process the memory controller uses
is analogous to the one used for read centering.

2.6.7 Different DDR4 Topologies

(a)

(b)

Figure 3: Fly-by topology of a (a) UDIMM and (b) RDIMM

The topology of a DDR4 memory module can exhibit variations depend-
ing on whether it is classified as a UDIMM (Unbuffered DIMM) or a RDIMM
(Registered DIMM) and whether it supports ECC (Error-Correcting Code).
UDIMMs are considered standard memory modules without an additional buffer
between the memory chips and the memory controller (see Figure 3a). They

15

are commonly employed in consumer-grade systems, offering lower latency and
straightforward operation. However, UDIMMs have certain limitations in terms
of capacity and memory channel support, making them less suitable for high-
density memory configurations.

RDIMMs, in contrast, integrate a register or buffer component that assists in
reducing the electrical load imposed on the memory controller (see Figure 3b).
This feature enables RDIMMs to support higher memory capacities and allows
for a greater number of memory modules per memory channel, making them
well-suited for server and workstation environments. Moreover, DDR4 memory
modules can further differ in their ECC support, denoting the presence of addi-
tional memory bits for error detection and correction. These additional bits are
stored in an additional chip on the DIMM. This optional chip is represented as
the dashed chip 8 in Figure 3 for both UDIMMs and RDIMMs.

These differences in the topology of memory modules introduce challenges
related to varying latencies, data access times and skews between the synchro-
nization signals like the clock or the data strobes.

2.6.8 Write & Read Leveling

Figure 4: DDR2’s symmetrical T-branch topology

From DDR3 onwards the command-, address- and clock-buses (from here
onward they will be referred to as ”the bus”) are no longer connected to the
chips on the DIMM using a T-branch as was the case with DDR2, shown in
Figure 4, which ensured the same length of electrical traces to all the chips. In
DDR4 the bus is routed using a fly-by approach, shown in Figure 3, to reduce the
total length of the electrical traces and resulting in only one or two points were
the bus needs to be terminated, depending on the type of the memory module.
This design choice was made to accommodate for higher transfer speeds but it
also introduces some new challenges.

The DQS, from the data lines, and the CLK, from the bus, can get miss
aligned due to the different flight-times caused by the difference of length of
the electrical traces. IN DDR4 memory this skew between DQS anc CLK are
different from chip to chip and depend on whether a read or a write is being

16

Figure 5: Waveforms of a write leveling sequence [Micron, 2014]

performed. A training step is thus needed to experimentally determine the
amount of delay the memory controller has to add to align the different DQS
anc CLK signals. This process is called write leveling, when performed for
writes, and read leveling, when testing reads. How this training step is done
varies between memory controllers but the general idea of write leveling is the
following:

When the DRAM is in write-leveling mode it uses the Data Strobe (DQS)
to sample the Clock (CK) and return the sampled value back to the controller
through the DQ bus. In order to enable the write leveling mode MR1<7> is set
to 1. The controller sends a series of DQS pulses, which are used to sample the
CLK and the sampled value is sent back via the DQ bus. If a 0 is returned it
means that DQS and CLK are not aligned. The memory controller therefore
increments or decrements the DQS delay and sends a new series of DQS pulses.
This is repeated until a 0-to-1 transition is observed. The delay value for the
DQS is then locked in and the memory controller proceeds to calibrate the next
DQS buses.

The read leveling, on the other hand, is performed by first enabling the pre-
defined pattern for system calibration via a write to MR3. Then multiple read
operations are performed at different internal delay settings, before disabling
the pattern via a second MR3 write. The results from the read operations can
then be used to find the best delay settings to align the DQS and CLK.

2.6.9 Vref Training

The reference voltage, denoted as Vref or VrefDQ, serves as the threshold volt-
age that distinguishes a logical 0 from a 1 on the data lines (DQ) in memory
systems. Notably, in DDR4 memory architecture, a pivotal transformation in
the termination style of these data lines occurred, transitioning from Center
Tapped Termination (CTT), also referred to as SSTL Series-Stud Terminated

17

Logic, to Pseudo Open Drain (POD). This shift aimed to bolster signal integrity
at higher speeds while also conserving IO power consumption.

In the CTT termination approach, a memory voltage divider circuit is em-
ployed, resulting in a reference voltage of half the DQ voltage (

VDDQ

2). This
setting establishes a fixed point of reference for distinguishing logic levels.

Conversely, the adoption of the Pseudo Open Drain (POD) design in DDR4
introduced a departure from the voltage divider approach. Consequently, the
reference voltage (Vref) became adjustable, allowing it to be configured to dif-
ferent levels. In this architecture, the reference voltage can be tuned within two
distinct ranges defined by the JEDEC specification.

Range1 spans from 60% to 92.5% of VDDQ, while range2 encompasses the
45% to 77.5% interval of VDDQ. Notably, both ranges consist of steps sized at
0.65%. This design decision empowers finer-grained control within the central
portion of the voltage range, albeit with reduced precision towards the extremes.

It’s important to underscore that there exists no universally prescribed
method to establish the optimal reference voltage configuration. Typically, an
iterative approach is employed, involving the repetitive writing and reading of
cache lines to assess correctness and identify the appropriate value. This prag-
matic technique allows for a dynamic determination of the optimal Vref setting,
depending on the memory module characteristics and environmental variable,
like temperature, that can impact signal integrity.

18

3 Implementation of the ATF port

The new implementation of the ATF, at the time of writing, is based on version
2.9 of the reference design from May 2023. To update to the newest release
please refer to the appendix.

Most of the code for the different subsystems of the ThunderX processor
can be found in drivers/cavium/thunderx and its respective include directory
include/drivers/cavium/thunderx. Here all the definitions of the Control
and Status Registers (CSRs) can be found as well as convenience functions to
initialize or use the subsystem e.g. the memory controller.

The implementation of the connection between the BMC and the ThunderX,
via the EFRI link, is located in lib/efri. All the remaining code for the
different BL stages, including the DRAM, MMU and GIC initialization code is
located in the directory for the Enzian platform plat/enzian. This would, in
theory, allow the code to be pushed to the upstream repository of the ATF. The
only modification of code not in these directories is the addition of the definition
of the EFRI service in smccc.h2.

3.1 Assessment of the old firmware stack

To better understand how to port the old BDK-ATF stack to the new ATF a
survey of the functions of the old stack was done. The BDK initializes (some-
times only partially) the following subsystems:

• UART console

• DRAM

• CCPI, which is the coherency link to the FPGA

• the on-chip NIC (BGX)

• USB

• PCIE (the initialization is completed in UEFI)

• TWSI (Two wire serial interface)

The ATF finishes up the initialization of the TWSI interface, initializes GPIO
and SGPIO and implements a quirk for the SATA controller. (The ThunderX
has an issue where SATA drives may randomly drop out if power management
is enabled on two lanes of a half of a QLM. Please refer to thunder sata.c3.)
Part of the old ATF implementation loads a flat-device-tree (FDT) file from the
SPI flash to main memory for the UEFI to load.

2https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/

-/blob/v2.9-enzian/include/lib/smccc.h
3https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-atf/-/blob/master/plat/thunder/thundersata.c

19

https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/include/lib/smccc.h
https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/include/lib/smccc.h

The arguably most important part of this thesis is the implementation of
the DRAM initialization. The majority of it is done in dram-init-ddr3.c4 in
the BDK. The whole initialization process comprises around 10 thousand lines
of code including behaviour specific to different processor beyond the ThunderX
and specific to both DDR3 and DDR4 initialization. The DRAM initialization
sequence can be split into two phases: the linear phase, which is executed once,
and the iterative phase, which is repeated until suitable settings for the memory
are found.

3.1.1 What can be improved

• Removal of precompiled FDT: As already hinted at before, the old ATF
loads a FDT and passes it to the UEFI. Ideally UEFI should be able
to identify the devices on the board automatically and generate all the
necessary ACPI tables, without the need for them to be precompiled.

The UEFI of the Enzian is, at the time of writing, in the midst of being
ported to the latest release of EDK2. The design choice has been made to
omit the FDT passing in favor of having it implemented in the new UEFI.
This makes the new ATF not compatible with the old UEFI.

• Initialization partitioning: Initializing the various subsystems of the Thun-
derX processor is spread out in the different stages of the firmware. For
the initialization of PCIE some steps are performed in the BDK, whilst
the rest of the implementation is done in the UEFI.

With the new design we want to clearly divide the scope of what the ATF
and the UEFI have to perform in regard to initialization. The rule-of-
thumb for the new implementation is to have only the necessary in the
ATF, most importantly the DRAM, and move the rest to the UEFI where
higher level features are available. This seems obvious but the BDK, the
first stage of the firmware stack, initializes the ThunderX’s NIC and has a
fully working network stack. In conclusion the new ATF will only include
the UART and DRAM initialization.

• Reimplementation of DRAM initialization: The old code for the DRAM
initialization includes jumps and as such is, also due to its impressive size,
difficult or even sheer impossible to understand. The decision has been
made to completely reimplement the entirety of the DRAM initialization.

3.2 Boot Procedure

The first step in booting the ThunderX of the Enzian is the boot ROM, which
starts execution in EL3 at address 0x87D 000 000 000 stored in the RVBAR EL3

register. At the start of the boot process DRAM is not yet initialized warranting
the question how a system can run without access to memory. In the case of the

4https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-bdk/-/blob/master/libdram/dram-
init-ddr3.c

20

ThunderX this problem is solved by allocating a scratchpad in the L2 cache. A
more detailed explanation can be found in Section 3.4. The boot ROM loads
either the Trusted or Non-trusted boot-level 1 firmware from the SPI flash into
the memory region from 0x100 000 to 0x180 000, and starts executing it.

After initializing the DRAM the BL1 unlocks the cache and, if the DRAM is
properly configured, the system is now running from main memory. To load the
next stage of the ATF the BL1 first initializes the IO interface to the SPI flash.
Then the FIP (Firmware Image Package) is loaded from address 0x80000 of the
Flash to main memory at address PLAT FIP BASE. The FIP contains all the next
stage bootloaders, namely BL2, BL31 and BL33 (UEFI). Using the information
in the header of the FIP BL1 loads BL2 into main memory at BL2 BASE and
hands of control to BL2. BL2 loads both BL31 and BL33 into main memory.
Control is then handed over to BL31, which, in turn, hands over to BL33.

3.3 SPI Flash Memory layout

The Enzian board has an SPI flash that is used to boot the machine. In order for
the ThunderX to execute the BL1 the flash has to have all the regions marked as
”Required by ThunderX”. From 0x80 000 upwards arbitrary data can be stored.
We store the FIP containing BL2, BL31 and BL33 there. Depending whether
Trusted or Non-trusted boot is selected the appropriate sections will be used to
continue execution. In case the Non-Trusted firmware was loaded, it is placed
at 0x120 000 and execution starts at 0x120 100. If a Trusted boot is performed
the Trusted firmware is placed at 0x150 000 and execution starts at 0x150 100.
In case of the Enzian system only the Non-trusted boot option will be used.
As each stage of the ATF has to be page-aligned we need to add padding such
that BL1 gets loaded to 0x121 000 and we put a jump instruction at 0x120 100
that jumps to the base of BL1 (the addresses found in the ThunderX manual in
§12.2.4 are off by one additional 0). This and the populating of the ”code-load
information block” and ”code-signature information block” is handled by the
ThunderX Boot Flash Tool [Cock, 2022].

3.4 The ThunderX’s scratchpad

As already hinted at before the ThunderX uses a scratchpad in the L2 cache to
execute without main memory. This 512 KiB big memory region, ranging from
0x100 000 to 0x17F FFF comfortably fits into the L2 cache of the ThunderX,
which is 16 MiB in size. After the boot ROM fills this memory region with the
boot-level 1 firmware, in this case the BL1, we lock every cache line associated
with this memory region using the L2 Cache Fetch and Lock (see ThunderX
manual §2.12.4). These cache lines will thus never get evicted and they can be
used to execute the BL1 albeit with limited available memory. We do this in
the BL1 to ensure that we don’t accidentally evict part of our currently running
binary. To later unlock the cache lines, after DRAM is initialized, the L2 Cache

Hit Writeback instruction is used. Implementations of both functions in C can

21

0x87F FFF

0x80 000

FIP

0x7F FFF

0x50 000

Trusted boot-level 1 firmware

0x4F FFF

0x20 000

Non-trusted boot-level 1
firmware

0x1F FFF

0x14 000

- reserved -

0x10 3FF

0x10 300

Trusted code-signature
information block

0x10 2FF

0x10 200

Trusted code-load information
block

0x10 1FF

0x10 100

Non-trusted code-signature
information block

0x10 0FF

0x10 000

Non-trusted code-load
information block

Required by ThunderX

Figure 6: Memory layout of the Flash memory

be found in thunderx l2c.c5. These can be used as a template to implement
all the other CvmCACHE instructions for the instruction, L1 and L2 cache of
the ThunderX as described in §2.12 of the ThunderX manual.

5https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-
/blob/v2.9-enzian/drivers/cavium/thunderx/thunderx l2c.c

22

3.5 Shared behavior of BL stages

All of the bootloader stages of the ATF, except for BL33, have some behaviour
and initialization in common. Every stage starts with the MMU in bypass mode,
where physical and virtual address are the same. The first thing that has to
be initialized when running a new stage is the console. Once that is done the
next step is setting up the MMU for the exception level at which the bootloader
stage is running. In practice this is EL3 for BL1 and BL31 and EL1S for BL2.

The console initialization is done in the function
${BLstage} early platform setup and the MMU is set up in
${BLstage} plat arch setup, where BLstage is either bl1, bl2 or bl31.

3.6 UART and console initialization

According to the ATF documentation, console initialization takes precedence
in each stage of ATF execution. Initializing the console involves setting up the
UART, the physical device, and registering it as a console using ATF’s console
framework.

The ThunderX platform comprises two UARTs: UART0 is used as the nor-
mal console to interact with the ThunderX and UART1 is used for the EFRI
link. UART0 is initialized in all ATF stages, while UART1 is initialized only in
BL1 and BL31 (see Section 5). Both UARTs operate at a baud rate of 115200.
The standardized initialization of ThunderX’s UART is possible due to its com-
patibility with the PL011 UART [ARM Limited, 2007].

Every console has a scope, which can be used to restrict its use during
different phases of the ATF. As part of the scope every console can either be
enabled or disabled for the following three phases:

• BOOT: The console output is active during the boot-up phase of the
firmware. This includes early initialization, bootloader execution, and
other early boot processes.

• RUNTIME: The console output is active during the runtime phase of the
firmware. This phase involves the execution of the Trusted OS or the
secure monitor.

• CRASH: The console is used by the panic handler of the ATF when an
error is encountered.

In this case, enabling all scopes for UART0 console is appropriate since it’s used
throughout ATF execution.

The process involves initializing the UART and registering it using the
console pl011 register function. Further configuration includes specifying
the console’s scope for boot, runtime, and crash phases using console set scope.
Given the UART’s PL011 compatibility, initialization mainly entails proper di-
vider and reference clock configuration.

23

3.7 Timer initialization (GTI)

The Global System Timers Unit (GTI)6 includes the system counter and dif-
ferent watchdog timers. The watchdog timers have not been initialized in the
new ATF. The system counter is used as the global sense of time for the en-
tirety of the system. It can be read by all privilege levels, meaning that user
space applications can accessed it by reading the CNTPCT EL0 register. The
64-bit register holding the count value of the system counter is referred to as
GTI CC CNTCV in the ThunderX manual. The system counter works as follows:
Every clock cycle the value of GTI CC CNTRATE is added to GTI CC CNTRACC.
When GTI CC CNTRACC overflows GTI CC CNTCV is incremented by one. We are
using the coprocessor clock COPROC CLK, running at 100MHz, as the reference
clock for the GTI. Given that we want to count in microseconds we need to over-
flow GTI CC CNTRACC once every 1µs or, equivalently, at a frequency of 1MHz.
This frequency is referred to as the GTI RATE. Given that the reference clock is
running at 100MHz, we have to overflow once every 100 clock cycles. As the
GTI CC CNTRACC register is 32-bit wide we need to increment it by:

increment = 232 ∗ GTI RATE

COPROC CLK
= 232 ∗ 1MHz

100MHz
(1)

To use the coprocessor clock we set GTI CC IMP CTL[CLK SRC] to 0. The in-
crement value calculated above has to be set in GTI CC CNTRATE. Then both
GTI CC CNTFID0 and GTI CTL CNTFRQ are set to GTI RATE before enabling
the system counter by setting GTI CC CNTCR[EN] to 1.

3.8 Serial Presence Detect (SPD)

Serial Presence Detect (SPD) is a small EEPROM chip integrated into DRAM
modules. It contains vital information about the memory module, such as its
capacity, speed, timing parameters, manufacturer details, and other relevant
data. This can be used by the firmware to automatically initialize the memory
without the need to specify the different settings.

Within the Enzian system, SPDs are interconnected through the Two-Wire
Serial Interface (TWSI), akin to the I²C bus. Notably, the bus connections differ
between the Enzian (bus 0) and ThunderX development board, called EBB (bus
1). By toggling the BUILD FOR EBB flag in platform def.h7, the ARM Trusted
Firmware (ATF) can be built for either platform.

Preceding the DRAM initialization sequence, BL1 undertakes SPD EEP-
ROM probing for each DIMM slot. Upon detecting a DRAM module and
successfully reading its EEPROM, the memory’s contents are parsed. An all-
populated 4 DIMM slot configuration is a requirement for the new ATF’s op-
eration, thus leading to a panic if this criterion isn’t met. Parsed SPD data
yields essential information including DIMM type (buffered/unbuffered, ECC

6ThunderX manual §20.3
7https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-

/blob/v2.9-enzian/plat/enzian/include/platform def.h

24

support), capacity, bank/column/row sizes, timing parameters, and maximum
supported speed grade.

These extracted values, elaborated further in Section 4, play a pivotal role
in configuring the memory controller of the ThunderX platform.

3.9 Memory Layout of Enzian

The ThunderX uses a 49-bit virtual address space, as dictated by ARMv8, which
gets mapped to a 48-bit physical address space. The physical address space is
split into an IO space (<47>=1) and DRAM space (<47>=0). For the DRAM
space the bits <46:42> must be 0. The bits <41:40> indicate the node whose
DRAM will be addressed. The remaining bits <39:0> contain the offset into the
memory of said node. The IO space requires bit <46>=0 and the following two
bits <45:44> indicate the node. The remaining bits <43:0> address a specific
CSR of a device.

3.9.1 Partition into Secure and Non-Secure DRAM

The ThunderX distinguishes between secure and non-secure DRAM regions.
There are a maximum of 4 so-called ASC regions8 that can be marked as secure
or non-secure. The regions have a granularity of 1 MiB. If code running in a
non-secure exception level tries to access a secure region a fault is generated.
The boot ROM initially only marks the region from 0x100 000 to 0x1FF FFF
as secure. Trying to access any memory region outside will result in a system
exception. This necessitates splitting the entire DRAM address space into dif-
ferent regions and marking them as either secure or non-secure. As shown in
Figure 7 the fist 2 MiB of memory are marked as secure. This is the memory
region where the BL1, BL2 and BL31 live. From 0x200 000 on-wards it is set
as non-secure.

For each region there exist 3 registers, where L2C ASC REGION START[ADDR]

sets the starting address of the region in MiB, L2C ASC REGION END sets the
exclusive (!) end address of the region in MiB and L2C ASC REGION ATTR is
used to specify if the region is secure or non-secure. As the end address is
exclusive mapping the memory region from 0x100 000 to 0x1FF FFF results in
L2C ASC REGION START[ADDR] = 1 and L2C ASC REGION END[START] = 1.

By partitioning the DRAM into secure and non-secure regions we can ensure
that only the firmware has access to these memory regions.

3.9.2 MMU - Memory Management Unit

The ThunderX’s MMU is compatible with the reference design from ARM. In
each stage of the ATF execution starts with the MMU in bypass mode, where
the virtual address and physical address are equal.

Every stage of the ATF maps its RO- and RW-section and the devices in
IO-space that are needed for system boot. These include the CSRs for the SPI

8ThunderX manual §4.4.2

25

interface (MPI), the coprocessor (RST), the generic interrupt controller (GIC),
the L2 cache controller (L2C) and the console (UAA). Additionally, BL1 needs
to map the memory region to where it copies BL2 and BL2 needs to map the
region for BL31. For simplicity’s sake we map the whole secure DRAM region.
To copy BL33 from the FIP BL2 needs to also map the UEFI memory region.

The old ATF implementation allocated the different memory regions asso-
ciated with each subsystem starting from a specific address: The first IO de-
vice was mapped at IO VA BASE and the others would be allocated sequentially.
When trying the same approach with the newest release of the ATF this resulted
in crashes during the configuration of the MMU and the subsequent switch to
using virtual memory. The current ATF release uses the console to print in-
formation about the memory map during the switch from physical memory to
virtual memory. This would crash the system as the console was still regis-
tered to the old physical address. An attempt at fixing the problem consisted
of disabling the console before the switch and re-enable it afterwards. Although
this worked fine it introduced unnecessary complexity. To completely solve the
problem the decision was made to identity map IO device’s memory. There-
fore, there is no more need to disable the console or keep track of the mapping
between virtual and physical IO addresses.

The mappings are performed in the tx configure mmu el3 function for BL1
and BL31 and in tx configure mmu el1 for BL2.

To perform the mapping the XLAT library from the ATF is used. This is
done with the tx configure mmu el function. It takes as arguments the start
and end of the RO- and RW-sections of the current BL. The start of the RO
section is the BL CODE BASE label, the end of the RO-section and start of RW-
section is BL CODE END and the end of the RW-section is BL END. It then adds
the RO- and RW-sections and the necessary IO-regions to the translation tables.
It then initializes the translation tables and enables the MMU at either EL3 for
BL1 and BL31 or EL1 for BL2.

26

0x1 1FF FFF

0xA00 000

FIP

0x9FF FFF

0x500 000

BL33 (UEFI)

0x4FF FFF

0x200 000

- free -

0x1FF FFF

0x180 000

BL2

0x17F FFF

0x100 000

BL1 (scratchpad)

0xFF FFF

0x10 000

BL31

0xF FFF

0x2 000
- reserved for future use -

0x1 000 EFRI Argspace

0x0 - free -

Secure RAM

Figure 7: Memory layout of the firmware in main memory

3.9.3 Design decision regarding the memory layout

The memory layout deliberately starts with an unallocated first page, beginning
at address 0x0. This approach ensures that there can’t be a pointer with value
0x0 that actually is a valid pointer and not a null pointer. BL31 will map a
physical page from user space to the address of the second page when using
EFRI (see Section 5). In order to not have a virtual address referring both to
the identity mapped physical page and the page from user space this page is not
mapped. The following six pages, located before the memory region designated
for BL31, are reserved for future use. One possible use for these pages is a
mailbox for communication between the various cores or as a storage location
for the state of the different cores. The latter needs to be implemented if the
functionality of shutting down specific core for energy saving is desired (see

27

Section 7).

3.9.4 Further space optimizations

As the Enzian project does not use the Trustzone functionality there is no need
to set up the MMU for EL1S, which is done in BL2. To reduce the size of the
firmware and the code base the RESET TO BL2 flag can be enabled. This flag
removes BL1, runs BL2 at EL3 and sets the entrypoint of the ATF to the BL2
stage. This effectively merging the functionality of BL1 and BL2. As Enzian
operates as a research machine, potential scenarios demanding the utilization of
TrustZone could emerge in forthcoming research endeavors. Thus the decision
has been made to not use RESET TO BL2 in order to maintain flexibility.

3.10 Loading next stages from the SPI flash

Upon initializing DRAM and configuring the MMU, BL1 proceeds to hand
over control to BL2. To do so the BL1 retrieves the Firmware Image Package
(FIP) from the SPI flash. The driver for the SPI flash has been ported from
thunder spi.c9 of the old ATF. To facilitate the subsequent steps, BL1 utilizes
the storage abstraction layer provided by the ATF. This abstraction layer sim-
plifies interactions with various storage devices while encapsulating the intricate
details.

With the storage abstraction layer, BL1 loads BL2 into memory to which it
hands over execution. BL2, having taken control, assumes the responsibility of
loading BL31 and BL33 into memory.

3.10.1 Firmware Image Package (FIP)

The Firmware Image Package (FIP) is divided into two main sections: a header
and a data segment. The header section contains entries that define specific
regions within the data section. Each entry is associated with a unique identifier,
which indicates the corresponding bootloader stage stored in that region. This
design allows the storage abstraction layer to efficiently load the require binaries.
In order to fully leverage the FIP and reduce complexity the choice has been
made to bundle the BL33 (UEFI) as part of the FIP. This makes it impossible
to flash the ATF or the UEFI separately in the new firmware stack. Entries can
be added or removed from the FIP using the fiptool. The tool is built with
make fiptool.

3.10.2 Storage abstraction layer setup

The setup of the storage abstraction layer involves the initialization of two IO
devices. These devices, called memmap dev and fip dev serve distinct purposes:

9https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-atf/-/blob/master/plat/

thunder/thunder_spi.c

28

https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-atf/-/blob/master/plat/thunder/thunder_spi.c
https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-atf/-/blob/master/plat/thunder/thunder_spi.c

the former accesses arbitrary memory regions, whilst the latter reads sections of
the FIP. This arrangement facilitates efficient handling of firmware components.

During the process of loading a stage from the FIP, memmap dev is initially
employed by accessing the memory region containing the entire FIP. Subse-
quently, fip dev uses memmap dev to read the contents of the FIP. By lever-
aging the information present in the FIP’s header and it can then access the
precise data segment within the FIP corresponding to the bootloader stage to
be loaded. This mechanism ensures accurate and targeted data retrieval.

Notably, the majority of the loading process can be succinctly specified in
a declarative manner (see thunderx io.c10). This is achieved by providing an
array of plat io policy structures. These structures outline how each stage
should be loaded and which IO device is to be employed.

In the context of the BL2, an additional descriptor, found in
bl2 plat mem params desc.c11, is utilized. This descriptor assists BL2 in de-
termining the appropriate order in which to load and execute images and the
manner in which they should be executed, including considerations like the ex-
ception level.

3.11 Generic Interrupt Controller (GIC)

The GIC serves as a centralized and flexible interrupt management unit. It
allows multiple processor cores to share and distribute interrupts effectively,
reducing the complexity of interrupt handling across the system. Some of the
key features of the GIC include:

• Interrupt Routing: The GIC manages the routing of interrupts to the
appropriate processor core, ensuring that each core receives and processes
the relevant interrupts.

• Interrupt Prioritization: Interrupts are prioritized by the GIC based on
their urgency and importance. Higher-priority interrupts are serviced be-
fore lower-priority ones, helping to maintain system responsiveness.

BL31 includes GIC initialization and configuration routines to ensure proper
setup and operation of the GIC before handing control over to BL33. The
development of this implementation was significantly influenced by reverse en-
gineering other platforms and the legacy ATF.

The initialization and configuration within BL31 is particularly streamlined
due to the compliance of the ThunderX’s GIC with Arm’s V3 GIC specification.
This conformance allows for a straightforward approach, wherein the intricacies
of the initialization process are handled by the gicv3 library provided by the
ATF. The implementation of the new ATF can be found in enzian gic.c12.

10https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/

-/blob/v2.9-enzian/drivers/cavium/thunderx/thunderx_io.c
11https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/

-/blob/v2.9-enzian/plat/enzian/bl2_plat_mem_params_desc.c
12https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/

-/blob/v2.9-enzian/plat/enzian/enzian_gic.c

29

https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/drivers/cavium/thunderx/thunderx_io.c
https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/drivers/cavium/thunderx/thunderx_io.c
https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/plat/enzian/bl2_plat_mem_params_desc.c
https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/plat/enzian/bl2_plat_mem_params_desc.c
https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/plat/enzian/enzian_gic.c
https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/plat/enzian/enzian_gic.c

3.12 Power State Coordination Interface (PSCI)

PSCI is the standardized interface that enables communication and coordination
of power management operations in a multi-core ARM system. The interface is
a set of standardized functions and calls to control various power states, such
as sleep, standby or power-off. The control revolves around power domains,
which represent a processing element like a core. These are referred to as power
domain level 0. A logical grouping of different cores (level 0), called a cluster,
is a level 1 power domain. Following this principle a CPU being a group of
clusters, is a level 2 power domain. The ThunderX has 8 clusters with 6 cores
each.

The Power State Coordination Interface (PSCI) serves as a standardized
mechanism for facilitating communication and synchronization of power man-
agement operations within a multi-core ARM-based system.

This interface encompasses a predefined set of functions and calls that en-
able the regulated control of diverse power states, such as sleep, standby, or
power-off. These operations are intrinsically linked to power domains, which sig-
nify individual processing entities, primarily cores, and are designated as power
domain level 0. Operating according to this structure, clusters, which group
together multiple cores at level 0, constitute level 1 power domains. Further,
in the hierarchy, the CPU, comprising several clusters, is classified as a level 2
power domain. To provide an example, the ThunderX architecture incorporates
8 clusters, each housing 6 cores.

Various actions can be applied to these power domains, ranging from placing
cores within a cluster in standby mode to shutting down the entire ThunderX
processor. Notably, the ThunderX exhibits a unique characteristic concerning
power control. It lacks the capability to directly manage power regulators, a role
instead assumed by the BMC. Consequently, when dealing with the shutdown
command, the EFRI link is used to send the shutdown signal to the BMC.

The implementation of PSCI for the Enzian platform can be found in
enzian topology.c13. Although the function responsible for implementing the
system shutdown has been successfully developed, it’s important to note that
the other functions pertaining to the PSCI have either not been tested or not
completed. These implementations are left as future work.

13https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/

-/blob/v2.9-enzian/plat/enzian/enzian_topology.c

30

https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/plat/enzian/enzian_topology.c
https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/plat/enzian/enzian_topology.c

4 Memory controller and DRAM initialization

The focus of this thesis lies in the initialization of the DRAM and its associated
memory controllers on the ThunderX platform. The ThunderX manual employs
the term ”LMC” to denote the DRAM memory controller. This section delves
into the technical aspects of the LMC’s features, the sequence of initialization
steps, and the challenges encountered during this process.

4.1 Overview

Figure 8: Topology of the LMCs in the ThunderX

The ThunderX employs four LMCs, which function as memory controllers
compatible with both DDR3 and DDR4 memory. They are used to manage
the complex behaviour needed to make modern DRAM work by performing the
periodic DRAM refresh or the calibration steps(discussed in Section 2.6).

The ThunderX operates in two modes: the four-LMC and two-LMC modes,
allowing for quad-channel and dual-channel memory transfers, respectively. The
focus of the ATF port is on the four-LMCmode, which offers the highest memory
throughput. The system assumes all four DIMM slots are occupied in the Enzian

31

setup. Additionally, due to DDR4 DIMM slots in the Enzian platform and their
incompatibility with DDR3 DIMMs, support for DDR3 memory is not included.

The memory controller supports DDR4 speed grades of 1600 MT/s, 1866
MT/s, and 2133 MT/s. For the latter, configuring the LMCs’ reference clock to
100MHz (instead of 50MHz) is necessary. The new ATF exclusively supports
the 100MHz reference clock, enabling memory operation at all supported speeds.
Both Registered DIMMs (RDIMMs) and Unbuffered DIMMs (UDIMMs) are
supported.

4.2 Topology of the LMCs

When running in four-LMC mode LMC0 and LMC1 receive the 100MHz refer-
ence clock. Using a Phase-Locked Loop (PLL) this clock signal is turned into a
clock frequency that can be divided down to the desired frequency at which the
DRAM will run. The PLL is a control system that generates an output signal
with a frequency and phase that are locked to the reference clock signal. LMC0
and LMC1 then pass on these clock signals to LMC2 and LMC3, as shown in
Figure 8. Consequently, certain initialization steps are performed exclusively on
LMC0 and LMC1, as discussed in Section 4.3.1.

4.3 LMC Initialization Sequence

The initialization of the LMCs involves a 15-step sequence outlined in the Thun-
derX manual14. The first 6 steps consist in enabling the 100Mhz clock, setting
the desired multipliers and divisors to achieve the target speed of the memory
and perform the reset procedure.

Subsequently, various timing parameters for DDR4 memory are calculated
and configured in accordance to the JEDEC specification for DDR4 memory.
Only for RDIMMs we have to initialize the MPRs with our desired testing
pattern for the read-leveling procedure that will be performed afterwards. The
subsequent three steps initiate training, including Offset, internal Vref, and
Deskew training. These steps appear to address read and write centering and
input voltage calibration. This is only an educated guess as the manual uses non-
standard terminology. Note that this training process is not the same as the Vref

training for DDR4 described in Section 2.6.9. In the new ATF implementation,
these training procedures occur only once as opposed to the training steps below.

The following three steps are more complex, involving write-leveling, read-
leveling, and DDR4 Vref training. Detailed discussions of these steps are pro-
vided in Section 4.7, 4.8 and 4.9 respectively. Since achieving successful DRAM
initialization requires iterative execution of these procedures, the algorithms ex-
plored for this purpose are discussed in Section 4.10. The final step involves the
clearance of ECC (Error-Correcting Code) errors, where applicable.

For a comprehensive understanding, subsequent subsections delve into the
most significant steps of the sequence. The ThunderX manual contains further
detailed information.

14ThunderX manual §7.9

32

4.3.1 Steps 1 through 6

The first steps of the initialization consist in selecting the four-LMC mode and
setting up the 100MHz reference clock. This will then be used to initialize the
PLLs of only LMC0 and LMC1 by setting their multiplier.In a later step they
will be configured such that the generated clock cycle is forwarded to LMC2
and LMC3.

Step 3 consists of setting the divisor for the generated clock signal in order
to get a clock signal that matches the desired DRAM speed grade. Note that
all the LMCs have to run at the same frequency. The manual mandates this
step only to be performed on LMC0 and LMC1. This results in LMC2 and
LMC3 not working correctly, which was validated using the knowledge from
Section 4.6. Furthermore by checking the implementation from the BDK we
found that step 3 is performed on every LMC.

This step is then followed by resetting the LMCs in a specific order and en-
abling periodic calibration of the forwarded clock signal. Although supported by
the ThunderX the ability to perform the initialization sequence whilst preserving
the contents in memory and the ability to change the speed grade of the DRAM
during execution was not implemented. Both these features were deemed either
too difficult to implement correctly in the given time frame and/or non-mission-
critical for the typical use case of an Enzian system: No particular use case has
been found for which a sleep feature (powering down the computer except for
DRAM, where the current execution state is stored) would be beneficial.

4.4 Step 7: Early LMC Initialization

DDR4 modules require the upholding of precise timing constraints to function
properly. These constraints are categorized as primary and secondary timings.
Primary timings are DRAM-module-specific and are derived from the SPD (see
Section 3.8) information. Secondary timing parameters are only tied to memory
speed grades. The process of deriving these timings correctly involved cross-
referencing the JEDEC DDR4 specification, reverse engineering the BDK and
validating the computed timings using memory dumps from the relevant Control
and Status Registers (CSRs) in the system.

Step 7 encompasses more than just timing-related adjustments; it also in-
volves configuring other essential settings. This includes specifying the sizes of
rows, columns, and banks in the DRAM module, as depicted in Figure 9. Addi-
tionally, this step entails determining the ranks present in the DRAM modules,
if the DIMMs are registered or not, and whether they support Error-Correct
Code (ECC).

4.5 Steps 9 through 11

The 9th step consists of initializing the MPR registers with the training patterns
that will be used in later stages of the initialization procedure. The subsequent
three steps begin the training procedure. Note that they only have to be execute

33

once and do not require any iteration, unlike the write- and read-leveling or the
Vref training. The ThunderX manual refers to these training procedures with
non-standard names so we can only speculate that they correspond to the write
and read centering procedure described in Section 2.6.6. All three of these
training procedures is performed automatically by the memory controller.

4.6 Testing the LMCs

Testing the LMCs is not a step of the initialization sequence in itself but it
still needs to be performed in conjunction with the write- and read-leveling and
the Vref training procedure. In these steps we need to write and read a test
pattern to memory and check if it gets written and read back correctly. As main
memory is interleaved between the different LMCs we need to know how the
LMC selection algorithm of the ThunderX works.

4.6.1 LMC and bank selection algorithm

0 1 12 - 18 6 - 8 3 - 4 2 4 3

DIMM Rank Row Col Bank C Col Bus

Figure 9: LMC internal addressing of DRAM

The LMC and bank selection algorithm changes based on the L2C CTL[DISIDXALIAS]

and LMC(0..3) CONTROL[XOR BANK] registers. These influence where a given
physical address gets placed in the DRAM stick and in which one it is placed.
Marvell advises to use L2C CTL[DISIDXALIAS]=0 and LMC(0..3) CONTROL[XOR BANK]=1

for best performance on most workloads 15. (Changes in these settings will break
the current memory testing code.) With these settings in mind and given an
address ADDR the LMC is selected using the following formula:

LMC = ADDR<8:7>⊕ ADDR<21:20>⊕ ADDR<13:12> (2)

For the 3 least significant bits of the bank the following formula is used:

BANK<2:0> = ADDR<11:9>⊕ ADDR<16:14> (3)

4.6.2 Testing methodology

To perform the write-read testing needed for the training steps the pattern in
Figure 10 is used. Two approaches were used to test a specific memory region:

• Cache line scrubs: The ThunderX manual recommends performing cache
line scrubs with a given a pattern for the Vref training. This consists in

15ThunderX manual §7.2

34

0xFDFD FDFD FDFD FDFD

0x8787 8787 8787 8787

0xFEFE FEFE FEFE FEFE

0xC3C3 C3C3 C3C3 C3C3

0x7F7F 7F7F 7F7F 7F7F

0xE1E1 E1E1 E1E1 E1E1

0xBFBF BFBF BFBF BFBF

0xF0F0 F0F0 F0F0 F0F0

0xDFDF DFDF DFDF DFDF

0x7878 7878 7878 7878

0xEFEF EFEF EFEF EFEF

0x3C3C 3C3C 3C3C 3C3C

0xF7F7 F7F7 F7F7 F7F7

0x1E1E 1E1E 1E1E 1E1E

0xFBFB FBFB FBFB FBFB

0x0F0F 0F0F 0F0F 0F0F

Figure 10: Testing patterns used for the various training stages

writing a cache line with the first line of the pattern, flushing the cache
line to main memory and reading it back. Then the read value can be
checked for bit errors and the same cache line is overwritten with the next
line of the pattern. Intuitively this can be used to identify bits that are
stuck either high or low because of a wrongly configured reference voltage.

• Page table writes: The second and more naive approach that was tried
consists of writing several 4 KiB pages with the pattern, flushing them
and reading them back to compare them with the reference pattern.

In order to test a specific rank of an LMC pointers are needed to locations in
memory that are mapped to that specific LMC and rank. The pointers are
constructed by setting the Rank bit from Figure 9 to the appropriate rank and
adding an offset of 0x200 000. This offset ensures that when testing rank 0 of a
DRAM module we don’t accidentally overwrite the ATF code in the scratchpad.
As a last step we check whether or not the pointers would be mapped to the
desired LMC using Formula 2.

4.7 Step 12: Write-Leveling

Write-leveling is the process that ensures uniformity in the timing of write op-
erations across memory chips of a DRAM module, mitigating potential issues
arising from variations in chip response times. The objective is to achieve bal-
anced signal propagation delays and data capture times in order to maintain
data integrity and optimize memory access speeds.

The ThunderX’s memory controller introduces a nearly automated approach
to perform write leveling, streamlining the optimization process. This controller
facilitates the adjustment of delay settings for each memory chip, allowing the

35

delay to be configured in increments of 1/8 of a clock cycle. The configuration
range spans from 0 to 4 cycles (exclusive).

The automated training sequence from the LMC only adjusts the fractional
part of the per-chip delay. This has to be complemented by determining the
decimal part (0, 1, 2 or 3) through software-based methods. This gives rise to a
search space of considerable magnitude, approximately 218 ≈ 250000 settings for
each rank (or around 70000 with non-ECC memory), significantly escalating the
complexity of the optimization task. Given the current system configuration of
Enzian, comprising 4 dual-rank DIMMs, this translates to a staggering 2 million
potential settings solely for the write-leveling aspect.

However, a key insight aids in significantly mitigating this complexity. Let
us consider two memory chips, X and Y, where it is known that the delay of chip
Y is greater or equal to the delay of chip X. This could arise from the physical
layout of the two chips on the memory module. For instance, in both RDIMMs
and UDIMMs, the delay of chip 7 should be greater than or equal to the delay
of chip 6. In this case if the fractional part of chip X exceeds that of chip Y, the
decimal part of chip Y must strictly surpass that of chip X. This observation
drastically reduces the practical search space to an approximate worst-case size
of 2000 settings. Consequently, exhaustive exploration of this refined search
space becomes feasible, allowing for the selection of the optimal setting without
errors, thereby striking a balance between performance and reliability.

4.8 Step 13: Read-Leveling

Similarly to write-leveling, read-leveling is the process that ensure the alignment
of read operations across memory chips relative to the CLK. For this procedure
the ThunderX has a completely automated approach: for every chip, the LMC
performs 64 read operations of an internal pattern stored in a MPR. It then takes
the longest run of successful settings and picks the middle value. This is then
set automatically in the LMC RLEVEL RANK register for every chip. As the testing
pattern is stored in a MPR inside the DRAM the read-leveling settings can be
determined without the need for a correct write-leveling setting. From here on
we will be referring to the combined procedure of write- and read-leveling only
as leveling.

4.9 Step 14: Vref Training

For the Vref training the ThunderX manual recommends performing repeated
cache line scrubs, as described in Section 4.6.2. When reading back the values
we compare the amount of false-1s (bits that should be 0 but are interpreted as
a 1) and false-0s. If there are more false-1s than false-0s we reduce the threshold
voltage and vice versa. To set the reference voltage a write to an MPR register is
used. In the case that there are still errors and the amount of false-1s and false-
0s is roughly the same it probably means that something else in the training
process, like write- or read-leveling, is wrong.

36

To calculate the initial voltage from which to start the training procedure we
use the formula for the case that only one DIMM slot is populated with either
a one or two rank DIMM:

Initial Vref =

1 +
1 + DQX CTL

15 + DQX CTL + RTT WR ∥ RTT PARK

2
(4)

where Initial Vref is the percentage of Vdd and ∥ denotes the parallel resistance
(see ThunderX manual §7.9.14).

4.10 Training Algorithms

Knowing how to perform the write-, read-leveling and Vref training steps should
make the implementation of the whole training procedure straightforward. But
a conundrum emerges: How can one perform write-leveling without reliable
reads, due to a still to be determined reference voltage? Similarly how can we
determine the reference voltage if we don’t have reliable writes, due to still to be
determined leveling settings? Several different approaches have been explored:

4.10.1 1st Algorithm

The ThunderX manual clearly states that if the write- and read-leveling settings
are known in advance it is possible to just write them to the appropriate regis-
ter. This approach was tried first. By starting the boot process of the Thun-
derX using the old firmware stack the appropriate registers can be dumped:
LMC WLEVEL RANK for the write-leveling of one rank, LMC RLEVEL RANK for the
read-leveling of one rank. For the Vref setting the value would be printed before
it was being set in the DRAM via a MPR write. These values where then hard
coded into the new ATF.

This approach worked fine and allowed further development of the ATF
port. This solution is, of course, less than ideal due to the need of having
to first extract all the leveling settings from each machine before hard coding
these values into the ATF or having the BMC supply them. Changing the
speed grade of the DRAM would also invalidate the settings. Ideally we would
want the process of DRAM initialization to be automatic and as hassle-free as
possible for the end-user of the Enzian systems.

4.10.2 2nd Algorithm

The next approach was to loop over the leveling and Vref training sequence.
All leveling settings would be tried and the one with the least amount of errors
would be picked. Next would be the voltage training. Depending on the amount
of false 0s or 1s during the testing the reference voltage would be either increased
or decreased, trying to find the sweet spot resulting in no errors. A false 0 refers
to a bit being read as a 0, when the testing pattern has a 1 in that bit and
vice versa for the false 1. The problem of finding these suitable settings can

37

Figure 11: Partial visualization of W/R errors as function of leveling and Vref

settings. The dark blue region represents the global minimum.

be modeled as a hyperplane, where one axis is for the Vref voltage, one for the
leveling setting and one for the amount of errors encountered during testing
with that particular settings combination. A section of such a hyperplane can
be found in Figure 11. To find the global minimum of such hyperplane the
following algorithm was devised:

1. Set the voltage to the initial value calculated with the formula from
Equation 4.

2. Find leveling setting for current voltage level with least amount of errors.
This is done by trying all leveling settings that are possible if taking into
consideration the heuristic described in Section 4.7.

3. Depending on false 0s and 1s either increase or decrease the reference
voltage by 1%.

4. Repeat from 1. until no errors are encountered.

This algorithm has a major flaw. Namely it first finds the best leveling
setting, as it tries them all at each iteration and then adjusts the Vref value

38

in 1% steps. This often resulted in a setting that would pass all the test but
would then not work after the scratchpad had been unlocked and the system
was running from DRAM. This phenomenon can be explained by Figure 12:
The observed behaviour of the amount of bit-errors when plotted against the
Vref settings is, that, in the lowest range, there are a lot of errors. Then there
is a region where some settings result in no errors but some other settings result
in errors. Only then a sizeable range of settings can be found were no errors are
encountered, referred to as the ”stable range”.

With this knowledge one can speculate that the algorithm finds one of these
sub optimal settings in the second region. This setting can work fine during a
test with a small sample size but fail later in the execution of the ATF. To fix
this problem we propose the next algorithm.

4.10.3 3rd Algorithm

This algorithm works exactly the same as the one before but adds a 5th step to
find the stable range of Vref settings. This last step works as follows:

Figure 12: Write/Read errors when performing a voltage sweep
with Algorithm 3.

Having a setting that resulted in the test passing with no errors we perform

39

(a) W/R errors for each Vref setting (b) W/R errors for each leveling setting

Figure 13: 2D plots of Figure 11

a memory test for every reference voltage value. Then the longest sequence of
passing tests is selected and the median value is picked as the final Vref value.

When running this improved algorithm on some ranks there is some un-
expected behaviour when trying to run at 1600 MT/s or 1866 MT/s: When
performing the last step of finding the reference voltage in the stable range it
turns out that the amount of errors doesn’t look anything like Figure 12. In-
stead every voltage setting from 45% to 92% results in no errors. This results in
68% being picked as the final Vref setting. This still works but it does not really
inspire confidence in the approach being chosen. Furthermore the algorithm has
some other issues:

• It doesn’t always terminate. When running at 2133 MT/s this is almost
always the case where as at the two lower speed grades this happens very
rarely. This could be due to the fact that leveling settings were picked that
appear to be the global minimum of Figure 13b but are instead a local
minimum. A fix for this problem could be to only allow a certain amount
of retries for a specific leveling setting to reach the global minimum. If
the amount of retries is exceeded the leveling setting is discarded and the
second best is picked and the process repeated.

• The following issue only manifested on zuestoll09 when running at 2133
MT/s For every DIMM and every rank the reference voltage was very
close to the one from the BDK (±1%) and the leveling where the same
except for the delay of chip 8. Chip 8 is responsible for ECC. This would
result in all the test running fine. Then, after finishing the initialization,
when ECC is enabled the system would panic. We suspect this is due to
the fact that we can’t test the ECC module by simply writing and reading
test patterns.

Despite encountering some challenges, particularly with the highest speed grade,
the algorithm demonstrates functionality. Notably, the algorithm has facilitated
successful runs of the new UEFI implementation on multiple occasions.

40

4.10.4 4th Algorithm

The last attempt was to try all combinations of leveling settings for every Vref .
The data generated by doing this was used to plot Figure 13 and 11. The
best leveling setting would be picked. Then, similar to the third algorithm, the
longest sequence of working reference voltages was found and the middle value
picked. Conversely enough this approach doesn’t even work for the two lower
speed grades of 1600 MT/s and 1866 MT/s, probably due to an error in the
implementation.

4.10.5 Takeaways and future work

Being short on time we couldn’t further address the challenges of DRAM train-
ing. The key takeaway is that this is whole process is hard. There exists little
to no academic research in this field and most of the knowledge is locked behind
vendor’s intellectual property. To continue this research we would suggest the
following:

• Build a more robust testing framework, capable of both performing page
table write and reads and cache line scrubs. Leveraging the correct testing
method for different steps, like using page table writes for leveling and
scrubs for the reference voltage training, could result in a more stable
algorithm.

Instead of only an overall notion of errors one could go into more detail
about errors in each individual bank, row or column, which could in turn
shed more light into were the current shortcomings of the algorighm are.

• Perform leveling and testing on each individual byte. This could reduce the
size of the search space and would direct testing to a smaller subproblem.

• More data visualization, like the graphs above, for different DIMMs, ranks,
speed grades and Enzian systems could be helpful in understanding the
whole scope of the problem.

A mistake we made was trying to solve the problem exclusively from first
principle, without relying on much data or visualization.

• A potential approach to address the challenge of training DRAM effi-
ciently and effectively is by leveraging neural networks. Neural networks
have demonstrated their capability in recognizing complex patterns and
relationships in various domains. Given that the problem of training the
DRAM appears to be one of finding the global minimum, and the current
algorithm performs gradient descent, neural networks could be a good
solution.

41

5 Configuration of the Enzian

Using the BDK, the workflow to change the DRAM speed or other configurations
of the hardware, is to interrupt the boot flow, change the settings via the BDK’s
BIOS-like prompt, then resume the boot operation. This is both slow and
cumbersome. Ideally we would want a way to set these settings in a way that
is: 1. persistent, 2. easy for a human to edit and 3. easy to edit by a machine,
as the process of configuring the Enzian would ideally be performed by the emg
command. The emg command is currently used to reserve Enzian systems and
it would be a nice addition to add a declarative way to set up a machine before
using it. To do so we can leverage the Enzian Firmware Resource Interface
(EFRI) link connecting the BMC and the ThunderX. This section serves as a
starting point for this end goal.

5.1 Implementation of BMC-side EFRI backends

{

"cpu": {

"dram": {

"speed": 2133,

"tFAW": 9

}

}

}

Listing 1: DRAM configuration. DRAM speed and an optional override are set

In EFRI a schema file is used to automatically generate both a BMC- and
ATF-side implementation of the protocol.

To implement the functionality of configuring Enzian declaratively from the
BMC a proof-of-concept variable store has been implemented. This relies on a
JSON file in which configuration options are stored. A JSON file is used because
it is both easy to read/write by humans and machines and because the nested
nature of EFRI’s paths can be represented without issues (see Listing 1).

The implementation of the variable store is added to the dram param type.
Every parameter of type dram param can then be read from the JSON file. This
has been done for a (non-exhaustive) list of DRAM parameters that can be
overridden by the BMC (see Listing 2).

The Enzian system lacks a traditional RTC and instead relies on the clock
of the BMC. As UEFI requires a RTC implementation an EFRI backend was
implemented to satisfy this need. This backend, which is accessible under
platform::rtc, returns the POSIX timestamp of the BMC’s clock.

42

common:

...

dram_param: &dram_param

type: int32

actions: *ro

impl: datasource-var-store

class: [cpu, dram]

subsystem: config

...

bmc:

...

DRAM parameters - incomplete...

- {name: speed, desc: Set speed of all the DIMMs, <<: *dram_param}

- {name: tRRD_S, desc: Row-to-row delay short, <<: *dram_param}

- {name: tRRD_L, desc: Row-to-row delay long, <<: *dram_param}

- {name: tFAW, desc: Four Activate Window, <<: *dram_param}

...

Listing 2: Excerpt from the Enzian EFRI schema. The 4 DRAM parameters
are read from the JSON file.

5.2 Configuration of DRAM parameters using EFRI

During the execution of BL1, a setup involving EFRI takes place before DRAM
initialization. This setup involves the utilization of EFRI to request various
DRAM parameters from the BMC through a get request. If these values are
defined in the accompanying JSON file, they are returned; otherwise, an error
response is sent.

These returned parameter values, if present, can potentially override the
default parameter values. In situations where the speed parameter is absent
or unsupported by the installed DIMMs, the speed will default to 1866 MT/s.
In the case that the other parameters are not set they will be computer in
tx lmc compute timings.

The implementation in the ATF for the override of DRAM parameters can
be found in the functions efri override dram params. Here additional param-
eters can be specified using the OVERRIDE DDR macro, which, for every DIMM
slot, updates the field of a given struct, containing all the parameter, by querying
the specified EFRI path (see Listing 3). These structs are then used to set the
LMC’s registers during the DRAM initialization procedure. For future generic
configuration parameters efri override params can be used along with the
OVERRIDE macro.

43

void

efri_override_dram_params(struct jedec_ddr4_cycles *timings,

struct ddr4_configs *configs) {

INFO("Handling overrides via EFRI\n");

OVERRIDE_DDR(timings, trp, "cpu:dram::tRP")

OVERRIDE_DDR(timings, tcke, "cpu:dram::tCKE")

OVERRIDE_DDR(timings, tcksre, "cpu:dram::tCKSRE")

OVERRIDE_DDR(timings, txp, "cpu:dram::tXP")

OVERRIDE_DDR(timings, txpr, "cpu:dram::tXPR")

}

Listing 3: Usage of the OVERRIDE DDR macro to override DRAM parameters

5.3 EFRI as an EL3 service

In addition to EFRI being used in the BL1 to load configuration parameters
it is also installed as a EL3 service in BL31. It can therefore be used by the
operating system or UEFI to communicate with the BMC over SMC calls. To
perform a UEFI request via SMC one first needs to allocate a 4K page and then
perform the POST ARGSPACE SMC call with the base address of said page. This
creates a shared page which is used to pass the EFRI frames between userspace
and the secure monitor. To send a frame, which has been populated in the
allocated page, the CLIENT INVOKE SMC call has to be executed. After a
successful exchange of messages with the BMC the response frame is placed in
the shared page.

Beyond its utilization in BL1 for loading configuration parameters, EFRI
also serves as an essential component installed as an EL2 service within BL31.
This incorporation within BL31 extends the accessibility and functionality of
EFRI, allowing the operating system or UEFI to establish communication with
the BMC through SMCs.

When initiating a UEFI request via a SMC calls, a systematic process is
followed. The first step involves the allocation of an aligned 4 KiB page, des-
ignated for this communication. Subsequently, the POST ARGSPACE SMC call is
executed, with the base address of the allocated page. This operation estab-
lishes a shared memory space, facilitating the seamless transfer of EFRI frames
between userspace and the secure monitor.

To transmit a populated frame, which resides in the allocated memory page,
the CLIENT INVOKE SMC call is invoked. This action effectively transfers the
frame’s content to the BMC, initiating communication.

Following the successful exchange of messages with the BMC, the response
frame generated by the BMC is deposited into the same shared memory page.
This streamlined mechanism enables the passage of information between the
system’s various components and the BMC, facilitating communication and co-
operation for system operation and management.

44

5.4 Modifications to the ATF-side

During the migration to the new ATF implementation, an effort was made
to preserve the generated code for the ATF-side implementation, while some
adjustments were necessary to ensure compatibility and functionality within
the new framework. This section outlines the specific modifications made to the
ATF implementation.

• Initially, an attempt was made to register a console and unbind it from
the various scopes. The goal was to expose the putc and getc functions
from the console. However, discrepancies between the old ATF and the
new version, especially in assembly implementations, led to issues. The
new ATF’s assembly-based approach caused intermittent character drops.

To address this, the solution involved reworking the putc and getc func-
tions. The new versions closely resemble those in the old ATF. This en-
sured consistent and reliable console operations for the ATF-BMC com-
munication to use.

• Changes were made to the External Firmware Runtime Interface (EFRI)
code to enhance its readability. Type casts were used frequently and made
the code difficult to understand. In the new implementation these have
been replaced by defining new structs and unions. These simplifications
are aimed at making the codebase more readable and facilitating future
maintenance.

• Changes in the XLAT library API, regarding dynamic and static page
allocation, forced some modifications to the generated code. In the old
API there was no distinction between static and dynamic page allocation.
These changes necessitated adjustments to code implementation to align
with the updated API, ensuring the correct allocation mechanism was
utilized. Porting the old code to the new API resulted in the following bug
in the EFRI implementation: When registering two different argspages
with the secure monitor the two physical pages from userspace would
be alias and mapped to the same virtual address in the ATF. This was
resolved by first unmapping the old page before mapping the new one.

In summary, the adaptation process sought to balance continuity with nec-
essary adjustments. The aim was to align the existing ATF codebase with the
new ATF framework’s requirements, ensuring that the system’s functionality,
compatibility, and clarity were maintained.

5.5 Future work and improvements

The process of extending the EFRI schema for the Enzian system or introduc-
ing supplementary backends was facilitated by the inherent modularity of the
protocol. This design characteristic streamlined the integration of new features
and functionalities.

45

However, a shortcoming was identified regarding the construction of argspages
for specific requests. To address this limitation, helper functions were developed
for use within the ATF16. Although these functions served their purpose, their
ad-hoc nature has to be considered suboptimal.

A potential solution for enhancing usability involves transitioning from the
argspage convention to Protocol Buffers [Varda, 2008]. Protocol Buffers, due
to its automated generation of getter and setter methods for specified types,
presents a more streamlined approach and eliminates the need for an ad-hoc
library. This transition aligns well with EFRI’s modular design, offering an
improved and user-friendly protocol implementation.

Another avenue for improvement involves shifting away from modifying con-
figurations via direct writes to the JSON file, and instead utilizing the emg

utility for this purpose. This approach holds the potential to enhance the con-
figurability of Enzian machines, enabling them to be reserved and preconfigured
according to specific requirements. By implementing this change, the process
of altering configurations becomes more streamlined and versatile.

16https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/

-/blob/v2.9-enzian/plat/enzian/enzian_bmc_comms.c

46

https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/plat/enzian/enzian_bmc_comms.c
https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/blob/v2.9-enzian/plat/enzian/enzian_bmc_comms.c

6 Evaluation

6.1 Firmware Size

Binary Size (in KiB)

bl1.bin 45
bl2.bin 17
bl31.bin 37

99

Figure 14: New firmware size

Binary Size (in KiB)

bdk.bin 4096
bl1.bin 27
bl2.bin 27
bl31.bin 55

4205

Figure 15: Old firmware size

By creating a new firmware stack that does not require the BDK, our ex-
pectation was to significantly reduce the overall size of the firmware image.

To validate this, we measured the sizes of the binary components in both the
old and new firmware stacks. The results in Table 1 and Table 2 clearly show a
substantial size reduction from about 4 MiB to around 100 KiB. This reduction
is due to completely removing the BDK. The new BL1 is slightly larger in size to
the old one due to the added code for the DRAM initialization. An additional
advantage is that flashing the binary now takes less time, which is useful for
quickly testing firmware. Including the UEFI the old stack took 40 seconds to
flash, whilst the new stack took only 18 seconds, also with the UEFI.

6.2 EFRI performance

Figure 16: Latency for different endpoint invocations using the EFRI link

47

Table 16 provides a visual representation of the delay observed when access-
ing specific endpoints from the ThunderX system using the EFRI link. This
latency test serves as a valuable benchmark to verify whether the new ATF
performs comparably to its predecessor and whether the EFRI link operates as
expected.

The test procedure involves utilizing the ATF commit d6255b4317 and UEFI
commit 1323f53d.18. Following the transfer of control to UEFI, a 4 KiB aligned
page is allocated. Subsequently, this allocated page is utilized as an argument to
an SMC call to register it with the EFRI service running in the secure monitor.
The assessment involves generating and transmitting multiple EFRI requests,
while simultaneously measuring the time span between request initiation and
receipt of a response.

Notably, the outcomes presented Table 16 exhibit a strong correlation with
the findings documented in [Xu, 2023]. This is to be expected as the major
bottleneck of the EFRI link lies in the baudrate of the UART.

6.3 Time to UEFI

In this test the aim is to quantify the time required for both the legacy firmware
stack and the new firmware stack to reach the UEFI state after the ThunderX
system has been released from reset. We also intend to measure the duration of
the DRAM initialization process. This task, however, presents challenges due
to the lack of an early-stage timing infrastructure during the boot process. The
boot development BDK prompts for user input upon startup, and no established
timing mechanism is available.

While an optimal solution would involve implementing a timer triggered by
the power-on command from the BMC and stopping upon receiving an EFRI
message, we opted for manual measurements due to our focus on relative rather
than absolute precision. Each entry in Table 1 corresponds to the average of 15
measurements.

new ATF BDK + old ATF

DRAM init. 4 s* 7 s
Total 9 s* 19 s

Table 1: Time from power-on to UEFI for both the old and new firmware stacks

During testing, we observed a fluctuation in the time taken by the new
ATF to initialize DRAM. Among 15 measurements, 14 consistently showed an
approximate 4-second initialization time. However, one measurement deviated
significantly with an 11-second time. This variability demonstrates that while

17https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-
/commit/d6255b439f0eb5df22fbf214cc738bb791401d11

18https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-bsc-alegnani/edk-2-enzian/-
/commit/1323f53d2a3444ba20c3973046257546af415ddd

48

the algorithm typically performs well, it doesn’t consistently exhibit determin-
istic behavior.

While a direct comparison of total boot times is infeasible due to the sub-
stantial variation in initialization steps between the old and new firmware stacks,
a meaningful comparison can be drawn for the DRAM initialization phase. No-
tably, the new ATF exhibits a level of performance in this aspect that is either
on par with or potentially surpasses that of the old version.

6.4 DRAM latency and bandwidth

Figure 17: Main memory bandwidth of sequential reads/writes

Our objective is to assess the bandwidth of the DRAM memory, verifying
its alignment with the configured speed. This evaluation was executed within
the BL31 stage, just before the transition to UEFI. The benchmark entails two
core actions: first, a pattern is written into a consecutive memory area; second,
the written data is subsequently read back. The measured metrics encompass

49

both the read and write times. The test first warms up the L2-cache by zeroing
the first 16 MiB of the memory region.

For this assessment, measurements were collected across a contiguous mem-
ory region spanning from 1 KiB to 1 GiB.

This comprehensive range was chosen to provide a thorough understanding
of the memory’s performance characteristics at varying data sizes.

As demonstrated in Figure 17, when viewed on a logarithmic scale, the time
taken for memory region writing exhibits a linear growth trend. Conversely, the
read time displays a distinct bump at the 214 KiB mark. This behavior aligns
with expectations due to the ThunderX’s L2 cache size of 16 MiB.

An interesting observation is the absence of the same elevation in the write
time measurements. This phenomenon is attributed to the fact that a single
ThunderX processor cannot fully saturate the DRAM bandwidth. Therefore,
the write time measurement reflects the performance of the L2 cache rather
than the DRAM bandwidth.

However, it’s worth noting that read time measurements beyond the 16 MiB
size capture the read bandwidth. Despite this, the measured read speed of 3.7
GB/s is notably lower than 56 GB/s, the maximum bandwidth of a quad-channel
configuration of DDR4-1866. This discrepancy is likely due to the limiting
factor of the ThunderX processor’s speed, suggesting that the read bandwidth
is constrained by the processor’s performance rather than the DRAM’s potential
burst bandwidth.

Due to the inconclusive findings from the test, it is left as future work to
perform a memory benchmark using multiple cores of the ThunderX in order
to fully saturate the available DRAM bandwidth.

6.5 Code base comparison

SLOC new ATF BDK old ATF

DRAM init. 2,575 12,397 –
Total 4,198 1,107,777 7,473

Table 2: Code base comparison between the new ATF, BDK and old ATF

One of the goals of the rewrite was to reduce the code base and make it more
manageable. To get the measurements in Table 2 the SLOCcount [Wheeler, 2004]
utility was used. To measure the DRAM initialization code the directories and
files in Table 3, where used to quantify the lines of code.

The code base of the new ATF is significantly smaller then the old ATF
although it contains the DRAM initialization. Although the ATF doesn’t im-
plement every feature needed to run the Enzian, like the PCIE initialization,
we can compare the code base for the DRAM initialization. The new ATF’s
implementation is 5x smaller then the one in the BDK. From the measurements
we can observe that the code base of the new ATF is significantly smaller than
its predecessor, even when considering its inclusion of the DRAM initialization.

50

The DRAM initialization implementation in the new ATF is approximately five
times smaller than the equivalent one found in the BDK. It’s crucial to empha-
size that transitioning to the new ATF eliminates the substantial BDK code
base from the maintenance equation, significantly streamlining the code base
and reducing the maintenance burden. This does not paint the whole picture
as one must keep in mind that some of the BDK’s functionality will have to
implemented in the UEFI.

51

7 Future work

Due to the constraints of the limited timeframe and the comprehensive scope
of this thesis, certain aspects have not been fully addressed. Notably, the key
features listed below have been left as future work.

7.1 DRAM initialization

The new implementation of the DRAM calibration is still not completely reliable
especially (and almost exclusively) for the highest speed grade of 2133 MT/s. As
there are plans to use the second revision of the ThunderX on future versions of
Enzian, which additionally supports the 2400 MT/s speed grade, the algorithm
has to be refined further to ensure stability of the system. Suggestions on how
it can be improved can be found in Section 4.10.5.

7.2 Extensive testing in Linux

The ATF port has been created without considering backward compatibility
with the old UEFI. At present, the rewrite of the UEFI [Montini, 2023], is in
the process of development. However, this new version does not yet possess
the capability to boot the Linux operating system. This absence of a functional
operating system significantly limits the available range of testing opportunities.

As the development of the new UEFI progresses, and it reaches a point where
it can successfully initiate the boot process for Linux, a comprehensive suite of
testing options becomes available. The foremost initial test entails the successful
booting of the Linux operating system. This test is pivotal as it confirms the
adequate implementation of all necessary features within the ATF.

Furthermore, a critical aspect involves the execution of thorough memory
benchmarks and tests, including assessments like the MemTest86 suite
[PassMark Software, 2023]. These memory-focused evaluations provide valuable
insights into the performance and reliability of the DRAM initialization in the
new ATF.

7.3 Reset behaviour

The ThunderX features both hard and soft reset capabilities. In a hard reset
a complete restart takes place where all components are initialized anew. This
action clears any data in the DRAM.

A soft reset on the other hand restarts the processor whilst retaining the
data stored in the DRAM. Currently, only the hard reset is implemented as, to
implement the soft reset, changes to the DRAM initialization code are necessary.
At the time of writing the ATF implementation treats a soft reset the same as
a hard reset.

52

7.4 PSCI implementation

As previously indicated in Section 3.12, it is important to reiterate that the cur-
rent implementation of the Power State Coordination Interface (PSCI) remains
incomplete. Specifically, the aspect that requires further development pertains
to the initiation of multiple core power-ups. This topic was not addressed in this
thesis due to the inherent challenges of testing multi-core functionality without
the ability to boot Linux. Similarly, the capacity to power down cores during
periods of inactivity has not been explored.

To address this limitation, a potential solution lies in utilizing the reserved
memory space situated below BL31, as illustrated in Figure 7. This unutilized
memory segment can serve as storage for managing core shutdown states. While
the full implementation and testing of these features were beyond the scope
of this thesis, the allocated memory area offers a valuable resource for future
endeavors aimed at achieving dynamic core power management.

53

8 Conclusion

From the work conducted in this thesis, several significant points arise for careful
consideration, particularly concerning DRAM initialization.

DRAM initialization inherently encompasses intricacies such as voltage ad-
justments, timing configurations, and signal integrity management. The com-
plexities inherent to this process create a promising avenue for comprehensive
research. Addressing these intricacies could potentially yield advancements in
memory performance and overall system reliability.

An important observation stems from the limited extent of research within
the domain of DRAM initialization. This scarcity can be attributed to the
prevalence of proprietary intellectual property held by various chip manufac-
turers. Another obstacle to research is the diverse landscape of memory con-
trollers. Varied memory controllers offer distinct characteristics and approaches
to DRAM initialization. This diversity restricts the applicability of research to
a specific subset of memory controllers.

The emergence of the RISC-V architecture as an open and standardized
platform bears significance for academic research endeavors. RISC-V’s openness
fosters collaboration and facilitates the establishment of standardized method-
ologies and approaches [Fisher, 2020]. This architectural standardization offers
potential as a foundational element for future research and optimization ini-
tiatives, enabled by a universally standardized memory controller architecture.
This could be used to perform generalized research in the field of memory ini-
tialization.

Seen more broadly, the entirety of firmware has the same underlying issues.
Throughout the history of computers, firmware has evolved in a piecemeal man-
ner, reflecting incremental changes over time. Notably, prevailing standards like
UEFI and BIOS highlight the persistence of outdated models, underscoring the
necessity to comprehensively reassess the foundational principles that underlie
system design[Cantrill, 2022]. This is also highlighted by Section 6, that shows
that there is a significant margin for improvement in metrics like code base size,
binary size and boot time. The need for open research into these aspects of
computing becomes evident, given that it is the foundation of computing.

54

9 Appendix

9.1 Updating ATF

Assume one is working on the branch v2.9-enzian, which has been branched
off master at the v2.9 tag. First get the upstream changes from the official
repository:

git checkout master

add the upstream repository

git remote add upstream git@github.com:ARM-software/arm-trusted-firmware.git

fetch latest changes

git fetch upstream

Merge the change using the fast-forward strategy

git merge upstream/master --ff-only

With the update master branch we want to rebase our branch onto the latest
release, which here we assume is v2.10:

git checkout v2.9-enzian

create new branch to reflect the version change

git checkout -b v2.10-enzian

rebase v2.10-enzian onto master at the v2.10 tag

git rebase --onto v2.10 master

fix possible merge conflicts and continue

git rebase --continue

if something goes wrong abort using

git rebase --abort

9.2 Building and flashing the ATF

The ATF is being built using a Docker container and the thunderx-boot-flash-
tool repository, which is included as a submodule in the trusted firmware repos-
itory. To initialize the submodule for the first time run git submodule update

--init. Then create the Docker image by running the build-docker-image.sh
script. Run build-atf.sh to create the atf.bin binary in the root of the repos-
itory. The above script requires the THUNDER EFI.fd UEFI file to be in the root
of the repository.

9.2.1 Manually building the ATF

make the BL1

make PLAT=enzian LOG_LEVEL=LOG_LEVEL_INFO bl1

make the BL2 and BL31 and package them into the FIP

make PLAT=enzian LOG_LEVEL=LOG_LEVEL_INFO fip

package BL1 into the format the ThunderX expects in flash

python3 create.py -e --untrusted bl1.bin bl1-flash.bin

55

make the tool to modify the FIP

make fiptool

Add the UEFI(BL33) to the FIP

./fiptool update --nt-fw THUNDER_EFI.fd fip.bin

Concatenate the (packaged) BL1 and FIP

cat bl1-flash.bin fip.bin > atf.bin

9.2.2 Flashing an EBB

To flash the ATF onto the EBB first copy the file over to enzian-server with
scp atf.bin enzian-server:/var/lib/tftpboot/enzian/<your-id>. After
getting the BMC console for the EBB on enzian-server with console hinterrugg0x-bmc

press P to power on the machine and
run thunder update -n enzian/<your-id>/atf.bin to flash the new firmware.
Remember to turn off the machine by pressing P when you are done or people
in the office will rightfully get mad.

9.2.3 Flashing an Enzian

To flash the ATF onto an Enzian first copy the file over to the bmc of an Enzian
with scp atf.bin zuestoll0x-bmc:<your-id>. After getting the BMC con-
sole for the Enzian as described in the quickstart guide, execute common power up()

to power up the board. Without powering on the CPU ssh into zuestoll0x-bmc
and run the following command flascp <your-id>/atf.bin -v /dev/mtd0.
Afterwards power on the CPU from the shell by using cpu power up(). Re-
member to power of the CPU and flash a stable version of the boot image after
use.

9.3 Using EFRI on an Enzian

The code for the EFRI interface can be found in this repo19. Generate the BMC-
side code by running python generate.py enzian-efri.yml bmc efri/target/generated.py

> efri/target/generated.py. Then change the path at which the json file will
be located on the BMC in var store.py. SCP the whole target directory to
the BMC and start executing the module with python -m target.

9.4 Debugging an EBB using JTAG

At the time of writing only the EBB hinterrugg01 can be debugged via JTAG.
Every Enzian board has a JTAG connection but it’s not yet functional. The
debugging uses arm Studio which is available on enzian-build via X11 for-
warding. To use it you need a configuration file in your home directory. To
launch arm Studio run:
ssh enzian-build -X /opt/arm/developmentstudio-2021.2/bin/armds ide

19https://gitlab.inf.ethz.ch/PROJECT-Enzian/bmc/enzian-firmware-resource-interface/

-/tree/atf-port

56

https://gitlab.inf.ethz.ch/PROJECT-Enzian/bmc/enzian-firmware-resource-interface/-/tree/atf-port
https://gitlab.inf.ethz.ch/PROJECT-Enzian/bmc/enzian-firmware-resource-interface/-/tree/atf-port

-configuration /storage/user/<your-id>/.armds. Create a new hardware
debug connection and select Cavium - ThunderX AP1 as the target. Then se-
lect the core to debug (Debug ThunderX 00 and set the address of the debug
probe to dstream1.ethz.ch. Happy debugging! NOTE: Before flashing a new
image to the EBB disconnect the debugger! Otherwise the BMC of the EBB
will complain about a power supply issue. If this happens ssh to enzian-build

and kill the armds processes.

9.5 Code base measurements

Measurement Included directories & files
new ATF - Total plat/enzian

drivers/cavium/
lib/efri

include/drivers/cavium
include/lib/efri

new ATF - DRAM init. drivers/cavium/thunderx/thunderx lmc.c
plat/enzian/enzian dram init.c

include/drivers/cavium /thunderx/thunderx csr lmc.h
include/drivers/cavium/thunderx/thunderx lmc.h

old ATF - Total plat/thunder
lib/efri

include/lib/efri
BDK - Total .

BDK - DRAM init libbdk-dram
libdram

Table 3: Directories and files used for the code base measurements

57

9.6 Summary of the Capabilities and Limitations of the
new ATF

• all 4 DIMM slots populated with DDR4 memory running in quad-channel

• speed grades 1600, 1866, 2133 (the latter not working)

• UDIMMs or RDIMMs supported

• no support for hybrid or non-monolithic DIMMs

• support for x4 and x8 single or double rank DRAM

• no support for asymmetric ranks or different DRAM capacities

• no backwards-compatibility with the old UEFI

• ATF and UEFI can’t be flashed separately

• ATF initializes the consoles, DRAM, PSCI, timer and interrupt controller;
other interfaces like USB, PCIE etc. will be handled by the UEFI

• watchdog timer has not been initialized

• EFRI link, enabling communication between the CPU and the BMC, fully
working

• only hard reset implemented, no soft reset

• PSCI not fully working, no power gating of cores, state of multicore sup-
port untested

58

References

[Arm, 2017] Arm (2017). Aarch64 exception and interrupt handling. https:

//documentation-service.arm.com/static/5f872814405d955c5176de2e.

[Arm, 2022] Arm (2022). Aarch64 exception model. https:

//documentation-service.arm.com/static/63a065c41d698c4dc521cb1c.

[Arm, 2023] Arm (2023). Trusted Firmware-A documentation. https://

trustedfirmware-a.readthedocs.io/en/latest/index.html.

[ARM Limited, 2007] ARM Limited (2007). Primecell uart (pl011) techni-
cal reference manual. https://documentation-service.arm.com/static/
5e8e36c2fd977155116a90b5.

[Cantrill, 2022] Cantrill, B. (2022). I have come to bury the bios, not to
open it: the need for holistic systems. https://www.osfc.io/2022/talks/

i-have-come-to-bury-the-bios-not-to-open-it-the-need-for-holistic-systems/.

[Cavium, 2017] Cavium (2017). Cavium ThunderX CN88XX, Pass 2 Hardware
Reference Manual, Revision 2.7.

[Cock, 2022] Cock, D. (2022). Thunderx boot flash tool. https://gitlab.

inf.ethz.ch/PROJECT-Enzian/thunderx-boot-flash-tool.

[Cock et al., 2022] Cock, D., Ramdas, A., Schwyn, D., Giardino, M., Turowski,
A., He, Z., Hossle, N., Korolija, D., Licciardello, M., Martsenko, K., Acher-
mann, R., Alonso, G., and Roscoe, T. (2022). Enzian: An open, general,
cpu/fpga platform for systems software research. In Proceedings of the 27th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’22, page 434–451, New York,
NY, USA. Association for Computing Machinery.

[Fisher, 2020] Fisher, Y. (2020). Fostering open innovation in hardware.

[Micron, 2014] Micron (2014). 4gb: x16 ddr4 sdram features. https:

//www.micron.com/-/media/client/global/documents/products/

data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf.

[Montini, 2023] Montini, A. (2023). Boot firmware for heterogeneous systems
running linux.

[PassMark Software, 2023] PassMark Software (2023). MemTest86.

[Varda, 2008] Varda, K. (2008). Protocol buffers: Google’s data interchange
format. Technical report, Google.

[Wheeler, 2004] Wheeler, D. (2004). Sloccount. https://dwheeler.com/

sloccount/.

[Xu, 2023] Xu, P. (2023). Enzian firmware resource interface.

59

https://documentation-service.arm.com/static/5f872814405d955c5176de2e
https://documentation-service.arm.com/static/5f872814405d955c5176de2e
https://documentation-service.arm.com/static/63a065c41d698c4dc521cb1c
https://documentation-service.arm.com/static/63a065c41d698c4dc521cb1c
https://trustedfirmware-a.readthedocs.io/en/latest/index.html
https://trustedfirmware-a.readthedocs.io/en/latest/index.html
https://documentation-service.arm.com/static/5e8e36c2fd977155116a90b5
https://documentation-service.arm.com/static/5e8e36c2fd977155116a90b5
https://www.osfc.io/2022/talks/i-have-come-to-bury-the-bios-not-to-open-it-the-need-for-holistic-systems/
https://www.osfc.io/2022/talks/i-have-come-to-bury-the-bios-not-to-open-it-the-need-for-holistic-systems/
https://gitlab.inf.ethz.ch/PROJECT-Enzian/thunderx-boot-flash-tool
https://gitlab.inf.ethz.ch/PROJECT-Enzian/thunderx-boot-flash-tool
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/

Eigenständigkeitserklärung

Die unterzeichnete Eigenständigkeitserklärung ist Bestandteil jeder während des Studiums verfassten
Semester-, Bachelor- und Master-Arbeit oder anderen Abschlussarbeit (auch der jeweils elektronischen
Version).

Die Dozentinnen und Dozenten können auch für andere bei ihnen verfasste schriftliche Arbeiten eine
Eigenständigkeitserklärung verlangen.
__

Ich bestätige, die vorliegende Arbeit selbständig und in eigenen Worten verfasst zu haben. Davon
ausgenommen sind sprachliche und inhaltliche Korrekturvorschläge durch die Betreuer und Betreuerinnen
der Arbeit.

Titel der Arbeit (in Druckschrift):

Verfasst von (in Druckschrift):
Bei Gruppenarbeiten sind die Namen aller
Verfasserinnen und Verfasser erforderlich.

Name(n): Vorname(n):

Ich bestätige mit meiner Unterschrift:
− Ich habe keine im Merkblatt „Zitier-Knigge“ beschriebene Form des Plagiats begangen.
− Ich habe alle Methoden, Daten und Arbeitsabläufe wahrheitsgetreu dokumentiert.
− Ich habe keine Daten manipuliert.
− Ich habe alle Personen erwähnt, welche die Arbeit wesentlich unterstützt haben.

Ich nehme zur Kenntnis, dass die Arbeit mit elektronischen Hilfsmitteln auf Plagiate überprüft werden kann.

Ort, Datum Unterschrift(en)

 Bei Gruppenarbeiten sind die Namen aller Verfasserinnen und

Verfasser erforderlich. Durch die Unterschriften bürgen sie
gemeinsam für den gesamten Inhalt dieser schriftlichen Arbeit.

Trusted Firmware for a Research Computer

Legnaui Alejandro

Milano, 21. I.2023 Anfal

	Introduction
	Background and Motivation
	Enzian
	Bring-up and Diagnostics Kit (BDK)
	Arm Trusted Firmware (ATF)
	ARM's Exception Levels
	Arm's Downcalls
	Boot Loader Stages
	ATF Components and Libraries

	Board Management Computer (BMC)
	Enzian Firmware Resource Interface (EFRI)
	Dynamic Random Access Memory (DRAM)
	Organization of DRAM
	DRAM Registers
	Memory Refresh
	ZQ Calibration
	Clock and Strobe
	Read & Write Centering
	Different DDR4 Topologies
	Write & Read Leveling
	Vref Training

	Implementation of the ATF port
	Assessment of the old firmware stack
	What can be improved

	Boot Procedure
	SPI Flash Memory layout
	The ThunderX's scratchpad
	Shared behavior of BL stages
	UART and console initialization
	Timer initialization (GTI)
	Serial Presence Detect (SPD)
	Memory Layout of Enzian
	Partition into Secure and Non-Secure DRAM
	MMU - Memory Management Unit
	Design decision regarding the memory layout
	Further space optimizations

	Loading next stages from the SPI flash
	Firmware Image Package (FIP)
	Storage abstraction layer setup

	Generic Interrupt Controller (GIC)
	Power State Coordination Interface (PSCI)

	Memory controller and DRAM initialization
	Overview
	Topology of the LMCs
	LMC Initialization Sequence
	Steps 1 through 6

	Step 7: Early LMC Initialization
	Steps 9 through 11
	Testing the LMCs
	LMC and bank selection algorithm
	Testing methodology

	Step 12: Write-Leveling
	Step 13: Read-Leveling
	Step 14: Vref Training
	Training Algorithms
	1st Algorithm
	2nd Algorithm
	3rd Algorithm
	4th Algorithm
	Takeaways and future work

	Configuration of the Enzian
	Implementation of BMC-side EFRI backends
	Configuration of DRAM parameters using EFRI
	EFRI as an EL3 service
	Modifications to the ATF-side
	Future work and improvements

	Evaluation
	Firmware Size
	EFRI performance
	Time to UEFI
	DRAM latency and bandwidth
	Code base comparison

	Future work
	DRAM initialization
	Extensive testing in Linux
	Reset behaviour
	PSCI implementation

	Conclusion
	Appendix
	Updating ATF
	Building and flashing the ATF
	Manually building the ATF
	Flashing an EBB
	Flashing an Enzian

	Using EFRI on an Enzian
	Debugging an EBB using JTAG
	Code base measurements
	Summary of the Capabilities and Limitations of the new ATF

