
Master’s Thesis Nr. 410

Systems Group, Department of Computer Science, ETH Zurich

Declarative Dynamic Power Management

by

Roman Meier

Supervised by

Daniel Schwyn
Dr. Michael Giardino

Prof. Dr. Timothy Roscoe

March 2022 - September 2022

Abstract

Modern computers feature large power networks that are non-trivial to safely control. The
same is true for the Enzian resarch computer [1], which has a power network with 37 voltage
regulators, plus a CPU and an FPGA, both of which impose complex requirements on the
order in which their power and clock inputs may be operated safely.

Initially, the command sequences to control the Enzians power network were written by
hand, but this proved tedious and error-prone. Luckily, prior work in the systems group at
ETH Zürich [2][3] has already solved the problem of declarative static power management,
but how to manage a dynamic platform that can change unexpectedly remained unadressed.

In this thesis, we develop the design for a dynamic power management solution that is able
to keep track of the changes the hardware undergoes, react to faults and other undesireable
platform states, and generate command sequences online to steer the platform into a new
state. Our solution can read a platform description from a declarative specification and is
therefore not limited to one pre-defined platform. We also show experimentally that our
plan generation mechanisms are fast enough for online usage.

Acknowledgements

I would like to thank my immediate supervisors Daniel Schwyn and Dr. Michael Joseph
Giardino for their invaluable support and feedback during these six months, and Prof. Dr.
Roscoe for his guidance and the opportunity to work in such an inspiring environment.

Deserving of special thanks is Andrea Lattuada, for his help in clarifying sequencing by
partial order.

Last but not least I thank my family and friends for their support and understanding during
this occasionally stressful time.

Contents

List of Figures 4

List of Listings 5

1 Introduction 7

2 Problem Discovery & Description 10
2.1 Enzian . 10
2.2 Board Management Controller . 10
2.3 Hardware . 12

2.3.1 Classification/Terminology . 12
2.3.2 Faults & Reaction Times . 12

2.4 Dynamic Power And Clock Management . 13
2.5 Distinction from Prior Work . 14

2.5.1 Platform State . 14
2.5.2 Reactivity . 14
2.5.3 Correctness . 15
2.5.4 Optimality . 15

3 Solution Requirements 16
3.1 Bus . 16

3.1.1 I2C . 16
3.1.2 SMBus . 18
3.1.3 PMBus . 20

3.2 Timing Requirements & Assumed Stability 21
3.3 Strict Power Dependencies . 22
3.4 Hardware Interface Ordering Requirements 22
3.5 Infrastructure . 23

3.5.1 Logging . 23

4 Approach 1 — Constraint Satisfaction Problem 25
4.1 Background . 25

4.1.1 Compilation . 25
4.2 Modelling . 25

4.2.1 Sequence Generation . 25
4.3 Custom Strategies . 26
4.4 Summary . 26

5 Approach 2 — Planning 28

1

5.1 Background . 28
5.1.1 Planning . 28

5.2 Modelling . 29
5.2.1 Fault Recovery . 29
5.2.2 Whole Model . 29

5.3 Summary . 29

6 Approach 3 — Discrete Event Systems 31
6.1 Background . 31

6.1.1 Discrete Event Systems . 31
6.1.2 Petri Nets . 32

6.2 Modelling . 37
6.2.1 Petri Nets as complete descriptors 37

6.3 Summary . 38

7 Solution 39
7.1 Background . 39

7.1.1 Partial Orders . 39
7.1.2 Maximum Independent Set . 40
7.1.3 Integer Linear Programming . 40

7.2 High-Level Overview . 40
7.3 Model Controller . 44

7.3.1 Model Status and Model Controller Loop 44
7.3.2 Model Controller Operation . 52
7.3.3 Configuration Management . 53

7.4 Interface . 54
7.4.1 Hardware Interaction . 54

7.5 Present State . 54
7.5.1 Component-DES . 55
7.5.2 Reading Hardware State . 58
7.5.3 Restricted Knuselian Component States 59

7.6 Platform State Transition Manager . 62
7.6.1 Target Platform State Resolution . 63
7.6.2 Sequences . 68
7.6.3 Operation . 74

7.7 State Transitions . 76
7.7.1 PET State changes . 77

8 Evaluation 78
8.1 Scaling and Online-Feasibility of Sequencing and State Generation 78

8.1.1 Setup . 78
8.1.2 Results & Interpretation . 79
8.1.3 Summary . 84

8.2 Simple Correctness of Sequencing and State Generation 85
8.2.1 Setup . 86
8.2.2 Result . 88
8.2.3 Interpretation . 89

8.3 Summary . 89

9 Conclusion 90

2

9.1 Future Work . 90
9.2 Summary . 92

Bibliography 93

A Evaluation Artifacts 97

3

List of Figures

2.1 A simplified view of the complete Enzian power tree 11

3.1 Timing requirements explainer . 24

6.1 Inhibitor arcs in three styles . 35

7.1 Initially, we only consider the hardware. 41
7.2 The hardware communicates with the Interface. 41
7.3 Our model uses the Interface to communicate with the Hardware. 41
7.4 The model must keep track of the “present state” of the hardware. 42
7.5 Users should also be allowed to send the model requests through the Interface. 42
7.6 A Transition Manager is in charge of ensuring that the platform transitions

from one state to another. It keeps track of the transition progress and
future transition targets. 43

7.7 Hardware is too hetergeneous, so we model components as DES. Because these
DES struggle with keeping much state, we add a configuration management
component. 43

7.8 Intended PET interaction/actions. States have rounded edges, transitions
are squres. Transitions specify the action that must happen for them to fire.
States have the model status they imply in their lower half and their name
above. “Known” is duplicated and the same state in both figures. 50

7.9 Figure showing the possible state incomaptibilities introduced by successive
Inputmatches. s1 is the base-state under consideration. States that can be
incompatible are connected with dashed lines. Siblings of s1 are in gray circles. 66

7.10 Sequence of a platform with a valid target state in T_On but no sequence
leading to it. The cycle is marked in red. 72

8.1 On
Off sequencing time ratio. Dashed lines show data from Schibenstoll01,
the undashed lines are from the Precision desktop, expect for the pink line,
which shows baseline data. The ratio between sequencing “On” and “Off”
seems to increase, but then settle at about 1.15, consistently for sequencing
on the Schibenstoll01, as well as on the Precision desktop. Interestingly, for
our baseline this reverses, and sequencing “Off” takes much longer, up to
an observed 3 times, than sequencing “On”. We can conclude that there is
no inherent difference in the “Difficulty” of sequencing On or Off sequences,
and that instead different implementations can find one or the other much
easier to solve for. We also interpret our data to mean that this difficulty
ratio converges to a constant, at least for our solution, for sufficiently large
problem sizes and that a runaway effect is unlikely. 80

4

8.2 On
Off state generation time ratio. Dashed lines show data from Schibenstoll01,
the undashed lines are from the Precision desktop dataset. We observe that
there is almost no consistent difference between generating an “On” vs an
“Off” state, barring values we can confidently consider noisy. 81

8.3 Cache Precomputation and Target Platform State Calculation times 82
8.4 Logarithmic y axis, Non-baseline are showing Target Platform State Calcu-

lation + Target State Cache Precomputation for Turn-on sequence. Baseline
is showing times for the two states necessary for both Turn-on and Turn-off
sequences, as well as a combined value adding the two. 83

8.5 Logarithmic y axis, Baseline state computation for “init”, “all-on” states and
a combined measure for both added up. Compare Figure 8.4. 83

8.6 Comparison showing Sequence Generation times for the Turn-on and Turn-off
sequences respectively. Our implementations results very closely track each
other, and that the baseline takes significantly longer to generate a sequence. 84

8.7 Comparison of Target Platform State Calculation + Target State Cache
Precomputation times on the Zynq BMC and the Precision Dekstop 85

8.8 Comparison of Sequence Generation times on the Zynq BMC and the Preci-
sion Dekstop . 86

8.9 Comparisons of Total Target Platform State Calculation and Sequence
Generation on the BMC for all variants, zoomed in to small platform sizes.
We see that for effort for the target state cache increases very quickly on the
BMC, but also that calculating the actual target platform state is always
faster than all other variants. For larger platforms, full state precomputation
is obviously not feasible on the BMC, but a smarter approach where the
cache is partially generated on-demand and in the background, or adding
heuristics for which target states to generate target platform statest first,
could preserve the advantages of having a cache, while thinning the pain of
having to compute it. 87

A.1 Marked sequence graph for a single ThunderX CPU used in the evaluation.
The red vertices are the steps from the baseline output, see Listing 4. 97

5

List of Listings

1 Illustrative subset of the “sanitized” baseline output. 88
2 Illustrative subset of the translated sanitized baseline output. 89
3 Sanitized baseline output. 100
4 Translated sanitized baseline output. 101

6

Chapter 1

Introduction

Bernard, if the right people don’t have
power; do you know what happens?
The wrong people get it!

Sir Nigel Hawthorne as Sir Humphrey
Appleby – Yes, Prime Minister

Responsible for the management of the complex power networks on modern systems are
(Base)board Managment Controllers, or BMCs for short. On modern server-class computers
the BMC is frequently an independent, fully-featured SOC with unrestricted access to
the power network, communications with the host system (for dynamic frequency scaling
or similar power-related requests), and even its own network interface. The firmware
these BMCs are running is usually proprietary or, in the best case, an open platform like
OpenBMC. In either case, the BMC is almost certainly running a complete operating
system and taking input from the network interface, usually through a HTTP-webserver.

Considering the extraordinary level of privileged access the BMC has to both security
and safety relevant components of the system, one would expect that BMC firmware is
implemented with an equally extraordinary level of care and rigour, and that a potential
user of such firmware could verify that it would operate their platform safely. However, this
is not currently the case. OpenBMC, for example, is a Linux kernel that is running some
DBUS infrastructure to allow python and bash scripts to communicate, and the proprietary
firmware cannot even be inspected in almost all cases.

To solve these issues, there is an ongoing effort at the ETH Zürich Systems Group to
develop trustworthy BMC firmware within the scope of the development of the Enzian
research system[1]. The first step, and the one we are concerned with here, is to design and
engineer a configurable power and clock management solution that ideally provides strong
safety and security guarantees.

Schult [2] tackled the problem of the static management of a declaratively specified platform.
Their solution is able to generate command sequences that take a platform from one power
state into another, assuming the platform is “stacically stable”, meaning it does not ever
change its state on its own without explicit instructions.

Knüsel [3] investigated the possibility of generating platform sates and command sequences
that are optimal for some goal state, like minimal power draw, but also relied on the static
stability of the platform.

7

This thesis is now an attempt to take the next step: managing a statically unstable
platform, a dynamically changing one; to provide dynamic power management. We begin
by discussing a few baseline assumptions and building up a common understanding of core
concepts, from the top:

The power components present on modern computers are highly heterogeneous, can inhabit
complex state spaces and require intricate command sequences to reach those states.
Meanwhile, unsafe operation of these power components can cause issues starting from
platform instability all the way to causing damage to sensitive, potentially expensive,
components. Damaged components, in turn, negatively affect the reliability of the platform
or cause it to fail altogether.

At first, any computer is almost entirely inert, bar some coin-battery powered real-time
clocks. Once it is connected to power a bare minimum of components usually powers on
automatically, like the BMC which is responsible for, among other things, power management
of the system and thus also for escaping from this “Partial off” state. A much more pleasing
power configuration, especially for a system like Enzian, is for it to be “On”. “On” being
a shorthand for “Useful”. What exactly this means can vary drastically from system to
system; for an Enzian a, for a user, maximally flexible “On” state would be if both the
CPU & FPGA, their respective DRAM and NIC, and other connected peripheries were in
their respective “On”, “Useful” states. We now have some notion of distinct power states a
system can be in.

What is left to do is to find some way to connect the “Partial Off” state to the “On” state.
We call the transition between two power states a “power sequence”, made up of discrete
steps the platform can take.

The trivial solution to the generation of a power sequence between two states is to read
the specifications of all the power components on the system, study the power network
that actually connects them, and manually, quite likely by trial-and-error, come up with a
sequence of steps that take the platform from the source to the target state. This is also
exactly how power sequences for the Enzian used to be generated, but this approach has
multiple, major drawbacks:

1. Any change to the components on the system requires a manual re-generation of the
sequence, including certifying that it actually works.

2. Manual work with complicated specifications is error-prone, and while behavioural
and safety guarantess can be made for the sequence, doing so usually involves an
impractical amount of effort.

Automated tooling is much better equipped for giving these sort of guarantess for an
arbitrary instance taken from a large problem space.

Prior work has, as discussed, solved “Static Power and Clock Management”, which Schult
[2] define like so:

Definition 6 (Static Power and Clock Management). Static Power and Clock
Management is about managing the stable characteristics of conductors. (Schult
[2])

Static management explicitly does not concern itself with any kind of deviatory behaviour
from what is assumed to be a stable system state. As such, they are not only unable to
deal with hardware faults, but the models developed lack the capability to even express

8

such dynamic behaviour.

For this thesis, we will effectively overload the term “Dyanmic Power Management”, which
already has an established meaning in the literature. Schult already does so for us:

Definition 7 (Dynamic Power and Clock Management). Dynamic Power and
Clock Management handles exceptional platform events. This includes general
platform failures as well as volatile platform characteristics reaching critical
levels. (Schult [2])

Peeking ahead to Section 2.4 we define dynamic power and clock management like so:

Definition 1.1. Dynamic power and clock management is the process of managing the
dynamic power and clock state of a system. Dynamic power and clock management is
primarily concerned with the safety of the system under management. In a secondary
capacity dynamic power and clock management attempts to reach and maintain a user-
defined stable system state. This entails both managing the platform in a non-faulty as well
as a degraded, faulty state.

In this thesis, we investigate avenues for solving, and present one possible solution to solve,
the dynamic power and clock management problem using a declarative description of the
system under management.

9

Chapter 2

Problem Discovery & Description

[. . .] Hilberry was ready to cut this rope with an
axe should something unexpected happen, or in
case the automatic safety rods failed.

The first nuclear SCRAM mechanism
Allardice et al. [4] - The First Reactor

This chapter provides a high-level overview of our problem, introduces necessary background
and nomenclature to give a .

2.1 Enzian

Enzian is a research computer designed by and under development at the Systems group at
ETH Zurich.

Enzian is a hybrid computing platform with a cache-coherent server-class Cavium ThunderX-
1 CPU and a best-in-class Xilinx XCVU9P-3 FPGA, both equippable with large amounts
of independent DRAM, and 400GbE or 80GbE network links for the FPGA or CPU
respectively.

Enzian was designed, unlike most other computer systems out there, not with a specific use
case in mind or constrained by arbitrary cost limits but as a research platform that should
be as flexible as possible.

In particular, Enzian’s design is optimized for Coverage, meaning that it can emulate as
much of the design space of systems as possible, and Openness, meaning that as much of
the system is available for modification as possible.[1]

2.2 Board Management Controller

On many modern computing platforms, especially server systems, we find an SOC dedicated
to the management of the rest of the system. This SOC is commonly referred to as the
Board Management Controller.

The Board Management Controller is usually responsible for bring-up and dynamic man-
agement of the system, and usually provides users with more or less sphisticated remote
management options ranging from serial shell access to SSH and web-interfaces. To make

10

erp2u_5v_PSUP

erp2u_3v3_PSUP

erp2u_12v_PSUP

erp2u_12v_CPU0_PSUP

erp2u_5vsb_PSUP

erp2u_12v_CPU1_PSUP

CPU

CPU_DDR

QSFP

Fans

BMC

PCIe

PLLs

VCU9P

FMC

FPGA_DDR

vtt_ddrcpu13_ncp51400

vtt_ddrcpu24_ncp51400

_2v5_cpu_13_max15053

_2v5_cpu_24_max15053

_2v5_cpu_13_ina226

_2v5_cpu_24_ina226

_3v3sb_PSUP_mcp1824t

vdd_ddrcpu13_isl6334

vdd_ddrcpu24_isl6334

vdd_core_0v9_vdd_oct_ir3581

_1v5_vdd_oct_max15301

vdd_ddrfpga13_isl6334

vdd_ddrfpga24_isl6334

vcc1v8_fpga_max15301

util_3v3_max15301

mgtavtt_fpga_max20751

mgtavcc_fpga_max20751

vccint_fpga_max20751

vadj_1v8_max15301

vccintio_bram_fpga_max15301

sys_1v8_max15053

sys_2v5_13_max15053

sys_2v5_24_max15053

mgtvccaux_l_max8869mgtvccaux_r_max8869

vdd_ddrfpga13_ina226

vdd_ddrfpga24_ina226

vtt_ddrfpga13_ncp51400

vtt_ddrfpga24_ncp51400

Figure 2.1: A simplified view of the complete Enzian power tree

these remote management capabilities possible the BMC is equipped with a network connec-
tion, and many find themselves exposed to the internet directly[5]. Given how critical and
potentially vulnerable the BMC is one would expect that it is well-secured and provably so,
but it is not uncommon for full Linux distributions to run on these BMCs.

With the development of the Enzian research platform at the Systems group this glaring
problem was brought to the attention of the group, leading to efforts to secure the BMC
software stack and ideally generate most of the complex, system dependent parts from
declarative descriptions.

Initial work has focused on the most immediately critical aspect of BMC funcitonality:
power mangement.

11

2.3 Hardware

We discuss a simple hardware classification scheme as well as how we view the issue of
faults & reaction times.

2.3.1 Classification/Terminology

We will avoid using “current” to mean “present”, instead opting for “present” directly. We
are not going to discuss gifts but will necessarily discuss power and electricity, so swapping
these terms is a reasonable choice.

We follow the classification of hardware into three types introduced by Schult [2] and refined
by Knüsel [3]:

Definition 2.1. Platform A platform is a collection of components and conductors between
them.

Definition 2.2. Power tree A power tree has the components of a platform as nodes and
conductors as edges. For platforms that we are interested in this graph can be represented
as a DAG, but in general may be an arbitrary graph.

Definition 2.3. Component A component is any node in the power tree.

Definition 2.4. Conductor A conductor is an abstract connection between an output and
an arbitrary number of input ports. A conductor forms an edge in the power tree.

Definition 2.5. Producer A producer is a node in the power tree without any power inputs
that are independent of the BMC. A producer may still depend on control inputs from the
BMC. In the power tree, a producer would be a “root”.

Definition 2.6. Controller A controller is a node in the power tree that does not drive any
conductors itself, but provides monitoring, alerting and configuration pings.

Definition 2.7. Consumer A consumer is a node in the power tree without any power
ouputs. In the power tree, a producer is a “leaf”.

2.3.2 Faults & Reaction Times

It is in the nature of power faults that if their effects are detectable by sensitive hardware
(consumers) then it is already too late.

Ideally, we would like to handle all these faults centrally in the BMC, but because any
signal that we might want to send travels at (roughly) the same speed as the fault we
have to interpret the fault itself as a signal, which we cannot do, as by the time the fault
has reached the BMC and gone through the error handling it has surely reached sensitive
hardware as well.

Because the only components capable of both detecting and mitigating power faults are
the voltage regulators they must be the ones to establish the fundamental dynamic safety
of the platform.

Heimhofer [6] measure alert handler run time at 200− 800ms for Linux and ≈ 40ms under
seL4 and reasons that 40ms is the theoretical limit for an alert handler as implemented due
to the fundamental latency induced by I2C.

12

2.4 Dynamic Power And Clock Management

A note for the remainder of this thesis: For brevity, we will frequently only talk about
“Dynamic Power Management”, but clock management is always implied.

Dyamic power management as found in the literature refers to a completely different
problem to the one we are encountering.

While we are concerned with the dynamic management of the system’s power network for
safety and adaptability, DPM in the literature tries to transition the system into power
states such that it consumes as little power as possible overall, as per this definition by
Benini et al. [7]:

Dynamic power management is a design methodology aiming at controlling
performance and power levels of digital circuits and systems, with the goal of
extending the autonomous operation time of battery-powered systems, providing
graceful performance degradation when supply energy is limited, and adapting
power dissipation to satisfy environmental constraints. (Benini et al. [7] – p.xi)

This traditional definition of dynamic power management is unfortunately not useful to
us. The Enzian is not battery-powered and is not motivated to reduce power consumption,
beyond keeping the FPGA and CPU from frying themselves. DPM solutions in the literature
also commonly hone in on how to detect which power state is desirable or optimal, and
tend to neglect the actual control portion of DPM. We will develop our own definition,
starting by cannibalizing the traditional DPM definition for the parts that we agree with:

Partial Definition. Dynamic power management is the process of managing the dynamic
power state of a system.

Ultimately, dynamic power management is not intrinsically motivated. The ideal power
state for a system, minimzing all risk without an external goal, is for the platform to be
completely powered off. We expand our DPM definition:

Definition 2.8. The trivial solution to all power managment is for the platform to be as
inert as it can be configured to be. We call this minimal state “off” or “powered off”.

Partial Definition. Dynamic power management is the process of managing the dynamic
power state of a system. Dynamic power management tries to reach a user-defined platform
state.

So far our definition basically matches that of static power management. What should
intuitively distinguish the two is the idea that DPM is dynamic, meaning it reacts to
changes in the platform state, be they user-induced or not. This also means that we not
only want to reach a target state, but also to maintain it as far as possible. The decision
of when we try to maintain the target state and when we abandon it reveals that we can
implement DPM with a goal on the spectrum between

1. Quality of Service

2. Hardware Safety

Remark. “Hardware safety” in this case refers to physical safety, not logical security. By
“hardware that is not safe” we don’t mean “logically compromised” but rather “in danger of
taking physical damage”.

13

If DPM tries to maximise Hardware Safety then it may be necessary to compromise Quality
of Service and usage of the system may be impaired. On the other hand, if we maximise
Quality of Service we may have to risk our hardware taking damage.

Partial Definition. Dynamic power management is the process of managing the dynamic
power state of a system. Dynamic power management tries to reach and maintain a user-
defined platform state. A dynamic power management implementation must decide where
on the spectrum between maximising “Quality of Service” and maximising “Hardware Safety”
its goal lies.

We argue that for most systems, prioritizing hardware safety makes sense. Only very rarely
is hardware considered expendable, and the components we are in danger of damaging are
potentially difficult or expensive to replace.

However, as the Enzian is a research system, we do not always want to maximize hardware
safety either, because that leaves us with a strategy that shuts the platform off completely
as soon as anything goes wrong. Instead, we specify that we also want to continue managing
the system when it is in a degraded state, and not necessarily always return to the safe “off”
state. Part of the motivation behind this is to allow for easier diagnostics when something
does eventually go wrong, as a platform that is “off” tells no tales.

Definition 2.9. Dynamic power and clock management is the process of managing the
dynamic power and clock state of a system. Dynamic power and clock management is
primarily concerned with the safety of the system under management. In a secondary
capacity dynamic power and clock management attempts to reach and maintain a user-
defined stable system state. This entails both managing the platform in a (non-faulty) as
well as a degraded, faulty state.

2.5 Distinction from Prior Work

Because there has been prior work in the area of power management, though it concentrated
on static management, namely Schult [2] and Knüsel [3], we take a moment to point out
some important differences in scope that arise when we can no longer assume static stability
of the platform.

2.5.1 Platform State

Prior work did not have to concern itself with the actual state of the platform or how to
react to it.

2.5.2 Reactivity

Prior work could assume a completely static view of the world.

This assumption in particular, we argue, has far-reaching consequences: Previously, latency
was only a concern insofar as it impacts offline usability of the solution. This means that
overall runtime, how it is distributed among solution steps and how runtime varies across
executions were far less restricted than they are in our case.

Because we have to deal with actual, dynamically changing hardware we have to make
our solution reactive, which includes a requirement for low latencies, as we discuss in more
detail later on.

14

2.5.3 Correctness

Prior work - due to it static, offline nature - only had to ensure the correctness of the
eventual output of its solutions.

To ensure overall correctness of our approach we also have to, for example, verify the sanity
of the declarative platform description.

Prior work took care to never generate a sequence that violated the limits specified in the
specification. However, if Prior work were to generate a faulty sequence then the system
would simply not turn on. In our case, if we do not generate a correct sequence then the
system may cease operating while the user assumes that it is in a stable, safe state.

It is also far less likely that software for dyanmic managment is under human supervision,
which is almost certainly the case for its static counterpart.

2.5.4 Optimality

Specifically Knüsel [3] concern themselves with a part of the problem state that we so far
have left completely unspecified: Optimality.

We do not pursue optimality as a goal in general, but will comment on it if necessary. While
we are much more concerned with keeping the platform safe, solutions with equal capability
to ensure safety can be compared on optimality of their operation.

15

Chapter 3

Solution Requirements

We can now move one step further: developing a set of ground truths shared by all solutions
to our problem.

3.1 Bus

We start out by discussing the bus we use to communicate with the components.

We are going to focus in particular on an observation that prior work made that would
increase the complexity of our eventual solution: that some unpowered devices can inhibit
the proper functioning of the entire bus.

3.1.1 I2C

SMBus and I2C protocols are basically
the same: [. . .]

NXP Semiconductors - I2C-bus
specification and user manual[8]

I2C is a protocol for Inter-IC (I2C) control and is popular for low-bitrate on-PCB com-
munication. For complete information about the protocol please see the I2C specification
[8].

I2C is fundamentally a “master-slave” protocol, meaning there is always one “master”
controlling the bus. “Slaves” cannot initiate communication by themselves over an I2C bus,
but must always either wait to be contacted by the “master” or use another method of
communication, like an alert line as defined in subsection 3.1.2.

The “master” and the “slaves” are connected by a bus consisting of two lines: the serial
data line (SDA) and the serial clock line (SCL). SCL is used to synchronize communication
between the master and slaves, while SDA carries actual data bits, either from “slave” to
“master” or from “master” to “slave”. The I2C standard defines four bidirectinal modes:
“Standard” (100kHz), “Fast” (400kHz), “Fast Plus”(1MHz), and “High-speed” (3.4MHz).

Due to its popularity but generally low-assurance implementations, there has been work on
formally specifying and modelling an I2C bus, we refer to Humbel et al. [9] for more.

16

For this thesis, we will end up mostly ignoring the actual I2C communication and leaving
the issue to some external interface.

There is, however, one aspect of I2C that we are very interested in: the problem with
unpowered devices.

Unpowered Devices

Schult [2] first point out that the I2C specification does not actually specify the behaviour
of a device that has been powered down, in general. In the worst case, this could mean
that an unpowered device pulls the I2C lines low, potentially disabling the I2C bus if any
connected device is turned off.

The I2C standard is an industry standard that has organically grown over time, but we will
attempt to shed some light on what it has to say on this issue nonetheless, and give our
opinion on what it might mean for our expecatations for an “I2C-compliant” device.

The I2C standard mentions unpowered devices not being allowed to pull SDA/SCL low
exactly thrice: Once in relation to the optional “Fast-mode”:

• If the power supply to a Fast-mode device is switched off, the SDA and
SCL I/O pins must be floating so that they do not obstruct the bus lines

([8] – Section 5.1)

And twice in quick succession in relation to another optional feature; software resets after a
“general call”. A “general call address” is an address used to talk to all connected devices
simultaneously. A “general call address” is followed by a 2-byte sequence, and optionally
the standard defines a software reset functionality as follows:

0000 0110 (06h): Reset and write programmable part of target ad-
dress by hardware. On receiving this 2-byte sequence, all devices designed to
respond to the general call address reset and take in the programmable part of
their address. Precautions must be taken to ensure that a device is not pulling
down the SDA or SCL line after applying the supply voltage, since these low
levels would block the bus. ([8] – Section 3.1.13 – Emphasis ours)

Following a General Call, (0000 0000), sending 0000 0110 (06h) as the second
byte causes a software reset. This feature is optional and not all devices respond
to this command. On receiving this 2-byte sequence, all devices designed to
respond to the general call address reset and take in the programmable part of
their address. Precautions must be taken to ensure that a device is not pulling
down the SDA or SCL line after applying the supply voltage, since these low
levels would block the bus. ([8] – Section 3.1.14 – Emphasis ours)

Neither of these mentions is definitive, however. For Fast-Mode the question arises of
whether this refers to Fast-mode capable devices in any mode, or devices in Fast-mode.
Consider the following scenario:

An I2C bus, connected to which are exclusively Fast-mode devices, all operating
in Standard-mode.

Are any of these devices obligated to let SDA/SCL float when they power down?

Consider also the possiblity of Fast-mode Plus devices, which must be downward compatible
with Fast-mode:

17

An I2C bus, connected to which are exclusively Fast-mode Plus devices, all
operating in Fast-mode.

Are these Fast-mode devices because they are currently in Fast mode? What if they were
in Standard mode?

As for the other two mentions, “Precautions must be taken” is possibly the pinnacle of a
non-binding statement and it would not be unreasonable to expect hardware designers to
implement these precautions with the same level of care as the I2C standard copy-and-pasted
the paragraph into two of its sections.

Overall, we are of the opinion that a reasonable I2C Fast-mode-or-higher device should
definitely never pull either SDA or SCL low, and that all properly designed I2C devices in
general should be expected to behave the same way, unless there is an obvious reason why
they should not – if they are designed to be used in a configuration with only one “master”
and one “slave”, for example.

For this thesis, we will assume well-behaved I2C devices, so that we do not have to consider
a Bus inoperable just because a single connected “slave” is turned off.

3.1.2 SMBus

Implementations are encouraged to
issue a NACK if the [Packet Error
Code] is present but not correct.

SMBus specification [10]

The System Management Bus or SMBus is an abstraction layer on top of I2C. SMBus
standardises communication over I2C such that messages with defined semantics can be
passed between SMBus-compliant devices. For complete information about the protocol
please see the SMBus specification [10].

SMBus was initially designed with the control of “Smart Batteries” in mind.

SMBALERT# and the ARA

See appendix A.2 in the standard.

SMBALERT# is an optional interrupt line. In theory, a slave device can pull SMBALERT#
low to tell the master that it wants to be spoken to. The alert response address (also
mentioned in appendix A.2), which the master can use to find out which device pulled the
line low, is specified independently of the SMBALERT# line, so some devices do not react
to ARA probes and have to be individually checked for faults when they pull SMBALERT#
low.

The standard does specify that

After receiving an acknowledge (ACK) from the master in response to its address,
that device must stop pulling down on the SMBALERT# signal. If the host
still sees SMBALERT# low when the message transfer is complete, it knows to
read the ARA again. ([10] – Appendix A.2)

which suggests that SMBALERT# and the ARA are intended for event notification and
not status signalling.

18

However, some devices insist on pulling the SMBALERT# line low until their fault condition
is resolved, so we cannot simply assume that if the SMBALERT# line is low that there is
a new fault, independent of the fault conditions we know to exist on the platform.

Unpowered Devices

As pointed out in subsection 3.1.1 the I2C specification does not explicitly stop an I2C
device from pulling the data or clock lines low when it is turned off, in general. The SMBus
specification has this to say on the matter:

When the bus is free, both lines are high. The output stages of the devices
connected to the bus must have an open drain or open collector in order to
perform the wired-AND function as shown in Figure 4. Care should be taken in
the design of both the input and output stages of SMBus devices, in order not
to load the bus when their power plane is turned off, i.e. powered-down devices
must provide no leakage path to ground. (3. - SMBus Specification Version
3.1[10])

This is a considerable improvement over the I2C specification, but the phrasing of “care
should be taken” remains too non-commital to be able to hold any non-compliant device
actually accountable.

Two other mentions of the problem suggest a stricter interpretation of the above than we
argue is necessarily reasonable:

The optional diode shown in the diagram above is for ESD protection. It may
be necessary in systems where a removable SMBus device such as a Smart
Battery is used. However, circuits as actually implemented must comply with
the previously stated unpowered leakage current specification. ([10] – Section
4.3.2)

Because of the relatively low pull-up current, the system designer must ensure
that the loading on the bus remains within acceptable limits. Additionally, to
prevent bus loading, any devices that remain connected to the active bus while
unpowered (that is, their VDD lowered to zero), must also meet the leakage
current specification. ([10] – Section 4.3.3)

The second specification still leaves an imporant detail undiscussed: devices that are not
“unpowered” (VDD = 0V), but still “off” in some more abstract sense. Those devices are,
even if fully compliant with the SMBus specification, still able to pull the bus low and
SMBus does not address this issue.

Much like with I2C, we conclude that we can expect reasonably implemented devices not
to pull the bus low if they are unpowered or “off”, but that the standard once again only
provides a weak guarantee for this.

19

3.1.3 PMBus

Plain Text: Characters stored
according to ISO/IEC 8859-1:1998
([A05])

System Management Interface Forum –
SMBus specification[10]

The Power Management Bus or PMBus is another abstraction layer on top of SMBus
(subsection 3.1.2), defining a protocol specifically concerned with the management of “power
converters and a power system”. See the PMBus specification [11] for more information.

Unpowered Devices

The PMBus specification includes a clear paragraph to ensure that the PMBus is never
compromised by a device “involuntarily”:

As described [in the] SMBus specification, [A03], the electrical signals of a
PMBus device must present a high impedance to the bus when the device is
unpowered, during startup until fully powered, and during shutdown once the
device can no longer assure the proper signal levels. ([10] – Section 4.3)

This precise phrasing addresses all the concerns we had with I2C and SMBus concerning
unpowered devices.

Warnings are an indication of a problem that does not keep the device from operating.

Faults are severe enough that they may cause the device to stop operating. Most fault
responses are configurable.

A device is allowed to either:

• Set fault condition bits and wait to be polled

• Notify the host of a fault condition

Alerts

For warnings and faults, PMBus devices may implement one or neither of the following
notification methods:

• Using the SMBus SMBALERT# signal

PMBus devices pull the SMBALERT# line low if possible.

• Directly communicating with the host

PMBus devices become temporary bus masters and send notice to the host.

Alert Response Address

PMBus also takes care to clear up any misunderstandings with regards to the Alert Response
Address (ARA):

20

The SMBALERT# signal remains asserted until is cleared. It is cleared when
the device successfully transmits its address in response to receiving the Alert
Response Address. It is also cleared by a CLEAR_FAULTS command. ([10] –
Section 10.3)

This makes it explicitly non-standard behaviour to not release the SMBALERT# signal
after receiving a message on the ARA. However, it does not specify that the component
cannot simply re-anble the SMBALERT# signal after having it cleared by an ARA or
CLEAR_FAULTS command. Persistent faults can still generate multiple signals.

3.2 Timing Requirements & Assumed Stability

To accurately follow the system state we have to consume all events it generates. If events
should arrive faster than we can consume them then they must be queued. If they are queued
then we either have to be able to determine if incoming alerts/warnings are dependent on
other events in the queue, losing time, or simply ensure that the queue does not grow too
long.

As we are dealing with a dynamic system that can rapidly evolve we argue that it is critical
that any online DPM solution must be able to react to changes in the platform state quickly.

If the voltage regulators are unable to ensure the system is in a safe state we must make
every attempt at saving the system before it takes damage, but because the kinds of faults
that may damage the hardware happen much too quickly for this to be feasible (in fact,
they travel at the same speed as any message about them) we have to trust the regulators
to keep the platform from taking damage in this way and to inform us about the event.

Thus, if the voltage regulators are always able to ensure the system is in a safe, if degraded,
state, then we do not need to immediately worry about the hardware taking damage and
this argument for the necessity of fast event resolution disappears.

But even then a secondary concern emerges: that of our DPM solution being able to react
at all if event resolution does not finish quickly enough.

See Figure 3.1a for an illustration of a DPM having to delay reacting to an alert because a
previous event resolution takes too long.

This observation relies on the idea that because events can have unpredictable effects on
our model platform state, and that we must keep our model platform in sync with the real
hardware to be able decide how to react to most events.

If we assume that some events resolution results are not required for the resolution of some
alerts, and that the event resolution can in this case be interrupted, we run into a new
problem:

See Figure 3.1c for an illustration of a DPM livelocking itself because it keeps interrupting
event resolution due to further events.

Resolving events faster does not solve either of these issues completely, but it is the only
way to lessen their effects and to solve them in most instances.

In conclusion, any DPM solution has to assume that the voltage regulators are able to keep
the platform safe independently, and it is our responsibility to configure them correctly to
achieve this. Second, we must always consume every piece of information the hardware

21

sends us, before we make a new decision. This leads to an assumption that this is even
possible, i.e. that the hardware does not flood us with events at a rate where we cannot
keep up with them anymore. We also assume that we always have the time to read the
platform state until we are satisfied that we have synchronized our model with it, because
the platform would not be observable otherwise, and an unobservable platform is incredibly
difficult, if not impossible, to control. Finally, we argue that it is still important for a DPM
solution to react quickly to hardware changes for a better user experience, and to give our
DPM solution a wider range of hardware-event-rates that it can still control.

3.3 Strict Power Dependencies

Dealing with the actual components making up the power network has the unusual conse-
quence that most of the components we would like to model depend on another component
to function at all.

Consider voltage regulators A and B with their respective models Am and Bm. We make
no assumptions about how these models are realized, only that they accurately model their
target’s behaviour and somehow allow their simulation i.e. have predictive capabilities.

If voltage regulator A is connected to voltage regulator B’s VCC, then A must be in a
state where it delivers power to B or cannot transition into a useful state.

This kind of dependence is not actually unusual. The whole point of the modelling techniques
we consider as approaches is to describe the situation where one thing happening depends
on another thing having happened in the past, or not having happened yet.

Consider now the following scenario:

A is delivering useful power to B, which cannot function without it. B is in an
arbitrary internal state and Bm is in sync with B. Voltage regulator A suddenly
stops delivering power. As B depends on A for power it immediately turns off.

Bm, to account for B’s sudden change of state, must immediately reflect this. In fact, Bm

must make provisions for B losing power whenever it depends on it, which for any useful
device is the case for most of its model space.

This only gets worse as the power network grows in size and more and more components
rely on each other for power, depending on the model, a component may have to explicitly
react to any one of its parents in the power tree changing.

For explicitly state-based, simple modelling techniques this leads to an explosion in the
number of state transitions that have to be accounted for.

Note that the same thing happens when modelling the complete internal state space of a
regulator.

3.4 Hardware Interface Ordering Requirements

Seeing that we can receive distinct categories of events with very different immediate
criticality, alerts as “Warnings” or “Faults” or expected measurements, it may seem like a
good idea to prioritize alerts over common events.

There is, however, a fundamental necessity in considering incoming events in the order
that reflects the changes the hardware went through accurately, which for all practical

22

purposes must mirror the order the hardware produced them in, as we cannot recover this
information ourselves in almost all cases.

Removing or disturbing the event order before the events have been considered can lead to
the model making incorrect judgements about the state of the platform.

We distinguish between removing ordering information altogether, as happens if we split
events and alerts into separate queues, and disturbing the order; swapping events.

There are of course instances where removing or disturbing the ordering is wanted and safe,
but those instances explicitly require the prior consideration of the events in question.

For most solutions simply consuming events in the order that they are produced by the
hardware is ideal.

3.5 Infrastructure

3.5.1 Logging

To allow post-incident diagnostics a logging infrastructure is required.

For this purpose we log in two modes: critical and non-critical.

Critical logs must be done instantaneously, no matter what other work is currently being
done. Non-critical logging events can be handed off and written asynchronously whenever
there is spare time.

23

(a) Finishing long-running reaction calculations adds delay when new events appear more quickly
than they are resolved.

(b) Ideal resolution of Figure 3.1a by interrupting the first event resolution when the alert happens..
Note that the event resolution may not be interruptible in the first place. The system has some
time between the first alert resolution and the second alert to react. The system has the chance to
avoid the second alert.

(c) Long running alert reaction interrupted by second alert. It is possible that the second alert
could have been avoided altogether. Note that the system has not taken a single action and that
there is no guarantee that the there is not another alert interrupting us again.

Figure 3.1: Timing requirements explainer

24

Chapter 4

Approach 1 — Constraint
Satisfaction Problem

This approach is effectively what prior work (Knüsel [3], and partially Schult [2], Schult
et al. [12]) proposed, except that we are also interested in making control decisions at the
same time.

For more involved approaches that still may tangentially rely on CSP solvers see the
dedicated planning Chapter 5.

4.1 Background

4.1.1 Compilation

Modelling a problem as a CSP is in general quite appealing, but has the major drawback
that execution speeds tend to be quite slow.

But there is no need to model a problem as a CSP and then run it from the beginning
every time we want to execute it. As an alernative, there has been research into “compiling”
CSPs into a format that allows faster solving at runtime, at the obvious cost of flexibility,
now only being able to solve the particular CSP that was compiled.

Weigel et al. [13] describe compiling partial solutions of constraint satisfaction problems to
aide in giving performance guarantees for particular instances while solving them on-line.

Fargier et al. [14] provide an overview over different compilation-languages for CSP problems
to be compiled into to make solving them online less “adventurous”, as they put it.

4.2 Modelling

4.2.1 Sequence Generation

Single-transition sequences

Generating sequences where every conductor may only tansition once given a target platform
state is a solved problem, as that is exactly what prior works (partially [2], [3]) already
implement.

25

However, as they both were not conerned with the management of a dynamic platform
neither approach is fast enough for online usage on, even comparatively powerful, BMCs.

While both of the prior approaches have some potential for improved runtimes (introducing
restrictions from Knüsel [3] into Schult [2], running Knüsel [3] with a simple SMT and not
an OMT solver), we are not confident that either could achieve the low latencies necessary
for productive online use.

Multi-transition sequences

Prior work assumes that every conductor may only change its state once per sequence to
simplify modelling.

This is in part because allowing conductors to change multiple times introduces a variable
number of constraints that are solution dependent: the points in time a conductor transitions.

One of the primary reasons we are interested in supporting multi-transition sequences is that
some components can only change their output when their output is low. A reconfiguration
sequence for such a regulator thus looks like:

VOUT = xV ⇒ VOUT = 0V ⇒ VOUT = yV

and requires the conductor connected to VOUT to change state twice.

This sequence is essentially a loop as far as VOUT is concerned, but there are likely a fair
number of unproductive loops that would either have to be explored first, wasting time, or
will be part of a generated sequence, as

VOUT = xV ⇒ 0V ⇒ yV ⇒ 0V ⇒ xV ⇒ 0V ⇒ yV

is a perfectly valid sequence to generate.

We would thus, in addition, have to consider a “shortest” sequence, further complicating
the problem.

As we are already not confident in the single-sequence CSP solving being fast enough, we
do not believe this to be a viable approach.

4.3 Custom Strategies

Doubling down on the SMT-solver approach improved solving time can be achieved by
implementing a custom strategy for the SMT solver to follow.

Balunović et al. [15] for example show that a SMT-solver strategy could potentially be
learned from a dataset of formulas, providing significant speedups.

4.4 Summary

While formulating and solving the problem as a CSP makes it possible to solve more general
instances of the problem at comparatively little “front-loaded” complexity, the complexity is
simply hidden in the solvers used. In general, CSP solvers suffer from poor runtime limits,
as sometimes finding a solution can take 0.3 or 10 seconds, depending purely on whether
the correct heuristics are chosen.

26

Especially when trying to not only solve a transition problem with CSPs, but generalizing
to include our control problem as well, the problem size would likely exceed what a CSP
solver could deal with in a timely manner.

“Compiling” CSP problems has been studied, but we could not glean the runtime guarantees
we would have needed ahead of time to justify the time investment into a serious proof-of-
concept.

We have thus chosen to not use CSP solvers for online state resolution/sequencing, or the
more general control problem.

27

Chapter 5

Approach 2 — Planning

We discuss planning separately from modelling our problem as a CSP (see Chapter 4), even
though some of the proposed solutions for “CSP” are very similar to planning solutions and
vice versa. The reason for this is simply that planning has emerged as a separate “field”,
trying to solve problems very similar to the one we are trying to solve, while CSP is a much
broader term.

5.1 Background

5.1.1 Planning

Schult [2] include a simple planning approach they call “smart backtracking”

In some sense, “Planning” is what prior work by Schult [2] and Knüsel [3] do: taking a
platform from some source state to some target state using a set of admissable actions.

A planning problem traditionally consists of three elements: a description
of the planning domain (specifying how actions can affect the state of the
world), a description of the initial state of the world, and a description of the
goal. A solution to a planning problem is a valid plan—one whose execution
is guaranteed to achieve the goal, and whose executability is also guaranteed.
(Turner [16], p.1)

We eventually want a solution to a meta-planning problem: How to efficiently find plans,
given a model description, between arbitrary states. Our initial state is not simply a
permutation of a few initial variables, but instead a permutation of the valid states of the
entire system. Additionally, valid in this case is not equivalent to safe, meaning the valid
state space is even larger than the safe one.

Generalized Planning

As mentioned earlier, we are not actually interested in finding a sequence between two
specific platform states, but instead sequences between arbitrary platform states.

Generalized planning seems to fit the bill

Generalized planning is about finding plans that solve collections of planning
instances, often infinite collections, rather than single instances. (Bonet et al.
[17], p.1566)

28

Jiménez et al. [18] give a more elaborate description of generalized planning

Traditionally the solutions generated by automated planners are tied to a
particular planning instance and hence, do not generalize. Generalized planning
goes one step further and studies the computation of planning solutions that
generalize over a set of planning instances. In the worst case, each instance in
the set may require a different solution. In many cases, however, it is possible
to compute a single compact solution that exploits some common structure of
multiple planning instances. A generalized plan is an algorithm-like solution
that is valid for a given set of planning instances. (Jiménez et al. [18], p.1)

and strengthens our belief that our arbitrary-sequence problem is essentially a generalized
planning problem.

5.2 Modelling

5.2.1 Fault Recovery

One functionality that planning could provide for solutions that mainly use other solutions
for “good weather” sequencing could be planning fault recovery sequences. In some cases
a fault can place the platform in states that it rarely occupies and that a good-weather
sequencer may not be able to handle. A planner, on the other hand, if provided sufficient
information about the platform, can probably find a sequence if one exists. Deciding when
it is safe to attempt the, in all likelihoood more computationally expensive, planner-fault
recovery would prove much more difficult than the modelling of the platform for the planner.

Implementing fault recovery this way would likely require a multi-stage solution with many
target platform specific details.

5.2.2 Whole Model

An interesting insight is the fact that since it would be possible to make a planner that
implmements our minimum interface and the whole problem is essentially a planning task
anyway, we could feasibly build a single planner as our solution.

It could be argued that any solution to our problem is a “planner” in some sense, but here
we mean the application of planning-specific modelling and solving techniques to DPM as a
whole.

It is unlikely that a tractible implementation could be done, as any naive model of the
problem would have a gigantic state space for the planner to sift through.

Without significant simplifications applied to the problem instnaces we expect to solve it is
not clear how the state space could be shrunk sufficiently to make such a whole-model planner
feasible, and with those restrictions it is questonable whether a planner-sledgehammer is
the right tool for the task.

5.3 Summary

We are of the opinion that if the compilation of Planning problems matures or another way
is found to ensure execution time limits under all circumstances then Planning could be a
great contender for an implementation that does not have to restrict the platform as much
as our eventual solution will.

29

However, for this thesis we decided against using a general “planning” approach. We could
either not establish enough confidence that a solution would fulfill the latency requirements,
or suspected that we would have to restrict our problem to a degree where another solution
becomes more attractive.

30

Chapter 6

Approach 3 — Discrete Event
Systems

In this chapter we discuss the implications of modelling the problem as a single or multiple
discrete event systems.

A particular focus will be on Petri nets, as they are a promising method for modelling
complex DES, but we will also discuss discrete event systems as Finite State Automata.

We will ultimately discover that modelling the entire system zealously as a DES is not
practical for making large-scale runtime decisions, and, if it were, that the problem domains
that DES/Petri nets are applied to in the literature tend to be too far removed from ours
to be useful for us. They are well-suited, however, for describing the complete component
behaviours that allow us to follow the system state.

6.1 Background

6.1.1 Discrete Event Systems

We begin with a definition of discrete event systems:

When the state space of a system is naturally described by a discrete set like
{0, 1, 2, . . .}, and state transitions are only observed at discrete points in time,
we associate these state transitions with “events” and talk about a “discrete
event system”. (Cassandras et al. [19], p.26-27)

Why this is an appealing way to model a problem where we have hardware that produces
discrete events we can observe, and that we want to model, should be obvious.

Discrete Event Systems, or DES for short, have also been extensively studied, and some
useful properties and applications have been identified.

Diagnosis

In the definition of DES, there is mention of transitions being “observable”. In real systems,
this is not always the case, especially unpredictable events like faults are frequently not
observable, at least immediately.

31

Detecting unobservable transitions, usually after the fact based on the subsequent, observable
behaviour of the model is called “Diagnosis”.

Diagnosability in DES was first studided by Sampath et al. [20] in their seminal paper.
They model the DES as a Finite State Machine (FSM) and build another FSM-“Diagnoser”
from the system to be diagnosed. The diagnoser FSM receives the same events as the base
model, and based on labels on its states decides if there has been an unobservable fault
or not. The diagnoser is also able to differentiate between ambiguous and non-ambiguous
fault-occurrences.

If we could model a component as a DES, with transitions denoting events that the actual
hardware experiences, then we could also build a Diagnoser for that DES, and detect the
occurrence of hardware faults that would otherwise be unobservable.

6.1.2 Petri Nets

At their core, Petri nets are descriptions of discrete event systems, like finite state machines.

Instead of only allowing “state” in one place, Petri nets allow multiple places in the Petri net
to hold “state” at the same time, vastly increasing their expressive power and potentially
allowing for much smaller Petri nets to express a comparatively much larger finite state
machine.

For further reading, we recommend Murata [21] for a broad overview with many helpful
references for further study and Stremersch [22] for a meticulous, elegant and complete
definition of basic Petri nets.

Operational Semantics & Firing Policies

For a list of firing policies we refer to Stremersch [22].

Introduction

Petri Nets were first introduced by Carl Adam Petri in his thesis[23] in 1962. Initially they
were not called “Petri” nets, but instead “conflict-free” nets, with their transitions being
used for simple bit-manipulations.

Petri nets are more expressive than DFAs, and for most systems more compact. Unfortu-
nately, that does not mean that they are a good replacement in every scenario, as their
analysis also becomes much more complicated. For larger, more complex systems even Petri
nets can reach impractical sizes, most examples used in research tend to be smaller with
only few states.

Industry Usage

Due to their versatility and illustrative ability Petri nets have found applications in many
fields. They have been used in any field where one could feasibly model the problem as a
DES, like business process detection and extraction, estimating salmon price rises caused
by global-warming induced lice[24] or simply for manufacturing systems[25].

Basic Petri Nets

Before we begin we have to note that as Petri nets have been around for a while there
exists a great variance in how they are defined and what nomenclature is used to refer to

32

their components. In the following we will use modern terms, as suitable.

A Petri net is a directed bipartite graph with two types of vertices: places and transitions.
Directed edges called arcs connect places to transitions and transitions to places.

Murata’s definition illustrates this view well[21]:

Definition 6.1. A Petri net is a 5-tuple, PN = (P, T, F,M0) where:

P = {p1, p2, . . . , pn} is a finite set of places,
T = {t1, t2, . . . , tm} is a finite set of transitions,
F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),
W : F → N+ is a weight function,
M0 : P → N0 is the initial marking,
P ∩ T = ∅ and P ∪ T 6= ∅.

A Petri net with the given initial marking is denoted by (N,M0).

(Murata [21], p.543)

We note here that the weight function does not change the modelling power of the Petri
net [21]. Since F is a set, we could simply replace any a arc with W (a) = k > 1 with k
many identical arcs.

This graph-based view of defining Petri nets can be deceptive, as it’s complexity obfuscates
what Petri nets really are: transition-possibility descriptions given a system state. The
definition that best showcases this, and also happens to be one of the most elegant, is given
by Stremersch in [22].

n,m are the number of places and transitions respectively.

Definition 6.2. A Petri net is a triple N = (F+, F−,m0) with F+, F− ∈ Nn×m

and m0 ∈ Nn.

where we refer to F+, F− as incidence matrices of N. m0 is the initial state of
N. (Stremersch [22], p.8)

This describes a Petri net in its entirety, and all Petri net behaviour can be deduced from
it.

We refer to Stremersch [22], p.8 ff for a complete introduction.

Behavioural Properties

This section closely follows the presentation of the same material in Murata [21].

Definition 6.3. The Reachability problem refers to trying to determine if, for a given
marking Mn, there exists a firing sequence of transitions ti ∈ T such that M0t1M1t2 . . .Mn.
Or in other words: whether a given marking Mn is “reachable” from the initial marking M0.
Notation: Mk is reachable from Mi if Mk ∈ R(Mi)

Definition 6.4. The Boundedness problem is determining if there exists a k ∈ N such
that Mi(p) ≤ k for all reachable markings Mi and all places p.

Definition 6.5. The Liveness problem is deciding if a given Petri net is “live” for all
markings M . A marking is “live” if at least one transition is enabled.

33

Because liveness is a difficult property to prove it is usually split up into “levels”. So a
transition t is in any of the four categories:

0. L0-live/dead If t /∈ L(M0)

1. L1-live If t ∈ L(M0)

2. L2-live If ∃seq ∈ L(M0) : |seq, t| >= k for some k ∈ N

3. L3-live If ∃seq ∈ L(M0) : |seq, t| =∞

4. L4-live If t is L1-live for each reachable marking Mi ∈ R(M0)

This liveness-Leveling goes back to Commoner [26] and Lautenbach [27].

Definition 6.6. A Petri net is “safe” if it is 1-bounded. See Definition 6.4.

Structural Properties

Definition 6.7. Controllability A Petri net is completely controllable if any marking of the
Petri net is reachable from any other marking.

Extensions

We have now discussed both basic Petri nets and a few properties these Petri nets can have.

A number of extensions of the basic Petri net model have been proposed. The reason we
discuss these separately is because they usually alter both how something is expressed as
well as what Petri nets are fundamentally able to express at all.

Inhibitor Arcs An inhibitor arc is a way to express that a state being “enabled” “inhibits”
activation of a transition.

An inhibitor arc connects from a place to a transition like a normal arc but cannot connect
from a transition to a place.

A petri net with inihibitor arcs is referred to as an Inhibitor Petri Net (IPN).

Given incoming arcs from places A = {a1, . . . , an} and inhibitor arcs from I = {i1, . . . , im},
where

ai, i1 = True⇔ ai, i1 is enabled

transition t’s truth formula is:

t⇔ (a1 ∧ a2 ∧ . . . ∧ an) ∧ ¬ (i1 ∨ i2 ∨ . . . ∨ im)

Inhibitor arcs were first introduced by Agerwala et al. [28] rather trivially like so: given
incoming inhibitor arcs from places B = {b1, . . . , bn} and normal arcs from P = {p1, . . . , pm}
to a transition t1, t1 is enabled iff:

(b1 = 0 ∧ b2 = 0 ∧ . . . ∧ bn = 0) ∧ (p1 > 0 ∧ p2 > 0 ∧ . . . ∧ pm > 0)

Later Agerwala [29] interpret inhibitors like so: they extend a Petri net with a boolean
predicate f : F → {T, F} where for an arc a ∈ (P × T) f(a) = T means it acts normally
and f(a) = F means it acts like an inhibitor.

34

Agerwala et al. [28] and [29] draw inhibitor arcs as arcs with strike, Murata [21] draws them
as dashed arcs with a circle where they connect to the transition, and in more modern
renditions they are usually depicted as normal arcs with circles at the transistion. See
Figure 6.1.

(a) Arc as drawn by Agerwala et al. [28]

(b) Arc as drawn by Murata [21]

(c) Arc as drawn in modern sources

Figure 6.1: Inhibitor arcs in three styles

Agerwala [29] also showed that Petri nets with inhibitor arcs are equivalent to Turing
machines.

To relevant results from this equivalence are:

1. Reachability is undecidable

2. Bounddedness is undecidable

Where 1. follows from the idea that we can build a TM-simulator in an IPN, due to their
equivalence. To check if the TM halts we could then solve the Reachability-problem for the
markings that imply that our TM halts. By this reduction we conclude that Reachability is
undecidable.

2. follows from the fact that we can, due to their equivalence, build a TM simulator in an
IPN. We then trivially extend this simulator with a step counter. k-boundedness of this
IPN given a certain TM to simulate then implies that the simulated TM halts after some
finite number of steps k, leaving us with the conclusion that Boundedness is undecidable
by reduction to the halting problem.

Transition Priorities In basic Petri nets all transitions have the same priority, meaning
that that all enabled transitions may fire.

Priority Petri nets add a new class of transitions with higher priority; transitions with the
same priority behave like normal transitions amongst themselves, but if a higher-priority
transition is enabled then no lower priority transitions may fire before it.

Hack [30] proves that inhibitor nets and priority nets are equivalent by providing ways to
convert between the two. This also implies that Petri nets with transition probabilities

35

suffer from the same complexity issues as those with inhibitor arcs,

Hack [30] notes that inhibitor nets and priority nets are equivalently expressive. Murata
[21] even uses a priority net as an example for inhibitor arcs.

Synthesis

We understand synthesis as an automated process which, given behavioural
specifications or partial specifications of a system to be realized, decides whether
the specifications are feasible, and then produces a Petri net realizing them
exactly, or if this is not possible produces a Petri net realizing an optimal
approximation of the specifications. (Badouel et al. [31], p.1)

Petri net synthesis is a fascinating area of research, because it may potentially allow us
to generate, or synthesize, behavioural models from voltage regulators, either by simply
observing their behaviour, or simply specifying a set of behaviours we’d like the components
model to have.

Synthesising Petri nets also has the potential to allow us to give behavioural guarantees for
the voltage regulators behaviours.

Theory of Regions

Introduced by Ehrenfeucht and Rozenberg in [32] and [33], the theory of regions is the
principle behind much of the synthesis approaches being used. The general idea is to
identify “regions” in the graphs given as input, and then usually treat these regions as
places in the resulting Petri net.

See Badouel et al. [34] for a history on the theory of regions and an overview.

See Ghaffari et al. [35] and Lorenz et al. [36] for applications.

Fault Diagnosis

The same idea of diagnosis as for FSM-based discrete event systems can of course be applied
to Petri nets as well.

We refer to Basile [37] for a good overview of Petri-net fault diagnosis.

Supervision & Control

Given a system described as a Petri net, “controlling” or “supervising” the Petri net is the
process of trying to ensure that the Petri net does not violate certain invariants.

In supervisory control the supervisor, usually also a Petri net, can decide to enable or
disable controllable transitions in the supervised net.

Stremersch [22] give a good introduction into supervision:

The requirement that the system behaviour always satisfies a number of condi-
tions is expressed by a legal set, a subset of the state space. These conditions
can express safety, avoidance of deadlock, the language is a subset of a given
language, . . . Because the controller can only disable events, and thus merely
limit the set of all possible future paths of the system without being able to
’force’ events, one speaks of supervisory control. The supervisory control goal

36

is that the state of the Petri net always belongs to the legal set. Moreover,
this needs to be done in an optimal way, namely by keeping the set of possible
future evolutions of the Petri net as large as possible. (Stremersch [22], xi)

This view of supervision is useful for systems where the actual state cannot be influenced,
say for example signalling control of a train network. The signalling controller cannot
actually stop the trains, only enable or disable signals and by extension track sections, for
example ensuring that two trains are never in the same section at the same time.

Note that Stremersch call the “supervisor” a “controller”. This is a good example of the
inconsistent usage of terms by the Petri net literature, and a source of great confusion when
initially investigating Petri nets.

6.2 Modelling

Immediately it should be clear why this seems like a promising way to view voltage
regulators. Most of the behaviour of voltage regulators that we care about is described
either by the voltage regulator being in a certain, discrete, state like POWERGOOD, or by
the voltage regulator reacting to some event, like a fault, and changing the state it inhabits,
like powering off and stopping power regulation.

Any continuous values we may care about, like output voltage, can be discretized by either
binning them into manageably many chunks with a predefined range, like having a state per
0.1V of output voltage, or by classifying ranges of continuous values into modal states, like
having a state for OUTPUT GOOD, OUTPUT INSUFFICIENT etc. The second approach
is, in general, the more natural one as we don’t really care about the actual voltage, only
about what it means for our system.

Given a complete description of every voltage regulator as a discrete event system we can
naturally combine them into a single discrete event system describing our entire system, by
having the events from one voltage regulator cause state changes in another.

However, that is where the applicability of discrete event systems seems to come to a halt.

6.2.1 Petri Nets as complete descriptors

Petri nets suffer from having to explicitly specify every transition, which is at its worst when
multiple states depend on another one to be active. For every possible transition where
the parent state changes there has to be separate transitions for all possible combinations
of dependent states that logically exclude each other, as otherwise the system can end up
in an inconsistent state where dependent states are still enabled when the parent state
is not anymore. In addition, this method requires the circumvention of inhibitor arcs
by introducing “boolean places” for each boolean state as we otherwise end up allowing
transitions that leave the system in an inconsistent state. There exists the alternative of
introducing priority but that makes it more difficult to apply methods developed for general
Petri nets, calling into question why we would use Petri nets in the first place.

In addition, Petri nets, while on occasion abused to do so, are not a good way of modelling
a single component inhabiting a single state, with complex transitions between possible
states. They are instead better suited for modelling systems with states that have simple
transitions, and ideally a place does not denote a “state” of a system, but instead a value or
physical object moving through a piece of software or a warehouse.

37

6.3 Summary

Discrete event systems in general, and Petri nets in particular, are modelling techniques
with a lot of history and research behind them.

However, for modelling a power network and controlling it, especially Petri nets are
unsuitable, as the size of the state machines, and number of transitions, involved grows far
too large to be practical.

A more appealing use-case are simple finite state machines whose only job it is to describe
an abstract state of a power-network component, and then to derive control decisions from
that.

38

Chapter 7

Solution

• Transmuting an & to &mut is
always Undefined Behavior.

• No you can’t do it.
• No you’re not special.

Rustonomicon[38]

Having discussed three potential approaches to solving the problem in the previous chapters
(See Chapter 4, Chapter 5, Chapter 6) that we concluded were, at least on their own,
unsuitable, we now provide our own custom solution in this chapter.

7.1 Background

Most of our solution will be quite idiosyncratic, or referencing prior work from Knüsel [3]
or Schult [2]. Some of the background required for our solution was also already discussed
in previous chapters.

Still, there are two topics remaining: partial orders, which we use extensively for sequence
generation, and maximum independent sets, which we use as the basis of our target platform
state generation.

7.1.1 Partial Orders

As Schult [2] note, sequencing is about finding a partial order on the events that we want
to sequence.

We follow [39] for a definition:

Definition 7.1. A partial order is established by relation ρ on a set E if

1. ρ is transitive in E.

2. ρ is irreflexive in E.

Linear Extension

Interesting for our purposes is the idea of a linear extension:

39

Definition 7.2. Given a poset, a linear extension is a total order compatible with the poset.

because it formalizes our need to realize a total order when we actually follow the partial
order as a sequence.

Of course, finding a partial order following our constraints is no use if there is no linear
extension. A guarantee that we can always find a total order that also respects the partial
order constraints would allow for much more confidence in our solution.

More formally it is required that

Theorem 1. For each relation π established on a partial order on a set E there exists a
relation ρ containing π which establishes a (total) order on E.

The first published proof of Theorem 1 is Szpilrajn [39].

We can now be certain that, if we find a partial order encoding all sequencing constraints that
there exists at least one linear extension and thus an executable sequence for transitioning
into the target platform state.

7.1.2 Maximum Independent Set

We use the concise definition of maximal independent sets from Luby [40]:

Definition 7.3. A maximal independent set (MIS) in an undirected graph is a maximal
collection of vertices I subject to the restriction that no pair of vertices in I are adjacent.

where maximal means that no vertex not in I can be added to the MIS without breaking
the IS condition, that no pair of vertices is adjacent.

Definition 7.4. A maximum independent set Imax is an independent set such that ∀I :
|I| ≤ |Imax|.

For our purposes maximum independent sets are more useful, but we will be using the
abbreviation MIS to refer to either depending on context.

Note that Imax is not necessarily unique.

7.1.3 Integer Linear Programming

A Linear Program is an optimization problem expressed as a set of linear equations and
a linear objective function. For general Linear Programs the variables can take any real
value (x ∈ R), whereas for Integer Linear Programming some or all of them are restricted
to integers (x ∈ N).

While Linear Programming is in P, Integer Linear Programming is NP-complete, and as
such in the same complexity class as, for example, solving 3-SAT problems (This fact is
rather intuitive, because a 3-SAT problem can be encoded as a set of linear equations with
integer variables x restricted to 0 ≤ x ≤ 1. Intuitively, the optimization fails if x ∈ R).

We use the abbreviation ILP to refer to Integer Linear Programming throughout.

7.2 High-Level Overview

In this section we provide a high-level overview of the solution as we envision it.

40

We provide more in-depth explanations of the solution components introduced here in later
sections, and focus instead on the structure of how these components are arranged and
their interplay.

We begin our introduction with the most obvious component to consider: the hardware.

See Figure 7.1

Figure 7.1: Initially, we only consider the hardware.

But without having any way to talk to, or interface, with it there’s not much we can do, so
we define just that: some interface through which we can interact with the hardware.

Figure 7.2: The hardware communicates with the Interface.

To allow sending commands to the hardware, which may be inquisitive or imperative, we
need some way for the interface to send them to the hardware. We also need to receive back
information, either about the success of our commands or the results we inquired about.

Because we are concerned with the dynamic behaviour of the platform, we also have to
allow for some alerting mechanism from the hardware, whereby it sends us unprompted
information, and the Interface has to be able to serialize this asynchronous communication
for what lies behind it.

On the other side of the interface, of course, sits what we call our “Model”.

Figure 7.3: Our model uses the Interface to communicate with the Hardware.

Having an abstract interface that translates between the hardware and our model makes
sense in our case, because as far as our model should be concerned interaction with the
hardware is homgeneous across devices, even if the devices themselves are not.

The model now ingests information from the hardware, filtered through the interface, and
interacts with the hardware when it deems it necessary. The model interacts with the
hardware either

41

• when it needs more information about the hardware state

• when it wants the state of the hardware to change

We argue that any such model that does anything useful must keep some encoding of what
it thinks the present state of the platform is. We call this sub-component the “present state”

Figure 7.4: The model must keep track of the “present state” of the hardware.

As we will see, this encoding and how to keep it in sync with the hardware is non-trivial,
so we split it off from the main model to discuss it separately.

We can finally make the system productive by giving the user a way to interact with the
system.

Figure 7.5: Users should also be allowed to send the model requests through the Interface.

The primary interaction a user would have is to have our model target some hardware
device state, like “turn on the CPU”.

Both these interactive user-defined targets and the ones we may want to define to mitigate
faults turn out to be non-trivial to reach, as prior work has already shown [2][3].

We therefore introduce the component in our system that will be responsible for coming up
with these state transitions, and that our model can query for what to do to reach complex
target states.

42

Figure 7.6: A Transition Manager is in charge of ensuring that the platform transitions
from one state to another. It keeps track of the transition progress and future transition
targets.

By splitting the management of transitions from the “present state” of the platform we are
already hinting at another separation that we argue becomes necessary.

While the abstract, static behaviour of power components is generalizeable, as Schult [2]
and especially Knüsel [3] have shown, dynamic behaviour is much more idiosyncratic and
hetergeneous, some behaviour can even differ between two components on the same PCB
which are of the same type, for example due to malfunctioning hardware or user choice.

Conditions like “If this component is starting up and fault A occurs, that is expected and
we try again, but fault B causes fault behaviour C” are something that our solution should
be able to handle, especially if we want it to be useful in production.

We split our “present state” into two parts: a dynamic “Configuration” component for
keeping track of the configuration we applied to the platform dynamically and a per-
component abstraction model for determining the present state of components, which will
be dynamically updated at runtime but is itself static. This also means that we will, and
must, handle all fault-detection within these per-component absraction models.

Figure 7.7: Hardware is too hetergeneous, so we model components as DES. Because these
DES struggle with keeping much state, we add a configuration management component.

To make it possible to specify these per-component abstraction models externally we decree
that they will function as Discrete Event Systems (DES), leave the precise implementation
purposefully vague for now, and refer to them as the component-DES. As the name may
imply, these component-DES are passed events by the model controller, but also do two
additional things: One, the component-DES exposes what it thinks the current component

43

state is to the rest of the model, and two, informs the rest of the model about actions that
significant component changes require, like SCRAMS or sequence invalidations.

7.3 Model Controller

The central component in charge of the model and our interaction with hardware is the
model controller.

Because we have to treat the hardware as an entirely asynchronous entity, due to the
possibility of alerts, the model controller logic potentially becomes incredibly complicated,
having to keep track of an increasing amount of state. For this reason, we introduce a simple
model status, derived from the model state, and use this to guide our model controller’s
decision making.

See Section 7.5 for a description of how we keep track of the present state specifically,
especially the component-DES.

7.3.1 Model Status and Model Controller Loop

We observe that we only need three fundamental states to inform our high-level decisions
about what the model is/should be doing.

These statuses are:

• Inert. The model is completely satisfied with its current state and without any external
impulses (user inputs, sequences to follow or hardware alerts) it would happily remain
in this state forever.

• Waiting. Unlike the “Inert” state the model is explicitly waiting for some message
from the hardware. The model may respond to a limited selection of user inputs but
will not attempt to follow sequences.

• Active. The model considers itself “inconsistent” in some way and wants to do
something. Currently this either means that the model wants to inquire about some
hardware state or command the hardware change.

We call this “model status” i.e. “the model status is Inert” for clarity, as “state” is already
used elsewhere, primarily for components.

We do not restrict which model status may transition into which model status, or how long
the model will remain in or not enter a certain status. Fundamentally, if a model is, for
example, never “Inert” then that is perhaps not very useful, because it will never react to
user input, but presumably a well-configured model is either doing something else that is
more important or the model is actually never supposed to take user input, for whatever
reason.

This way of modelling platform status is appealing because, given some behavioural
guarantees from the functions used, giving liveness guarantees can easily be done simply
through the model state.

We could, for example, ask for

�(♦Inert)

44

which would immediately also provide

�(step_available()⇒ ♦follow_step())

We can now build up a primary loop for our model controller.

Every loop iteration, we should check for impulses/events that the interface provides for us,
deal with them somehow, and then immediately update our model and its status. This
should happen independently of the model status, because we may decide to do something
in conflict with the platform state, like trying to communicate with a component that just
faulted, if we do not ingest platform state information as soon as it is available.

Algorithm 1: Model loop
if i← Interface.impulse_available() then

else

end
update_model();
resolve_new_status();

When such an impulse is available, it can take one of two forms: It is either a user-
provided target state or the hardware informing us of an update. Uncategorizable inputs
are discarded.

Note that any external entity requesting an update is a “User” to us. We do not currently
distinguish between a human typing into a terminal and a CPU requesting increased voltage
for frequency scaling.

In addition to updating the model we should also give the transition manager a chance
to synchronize with the new platform state after updating it. See Section 7.6 for more
information on the transition manager.

Algorithm 2: Model loop
if i← Interface.impulse_available() then

if Impulse i specifies a new user target then
transitionManager.apply_user_target(i);

else
discard(i);

end
else

end
update_model();
resolve_new_status();
transitionManager.sync_with_model();

If the impulse is an update from the hardware, then this update needs to be “announced”
to all relevant component-DES. If the impulse concerns a conductor these are all connected
components’ inputs or if the impulse concerns a component, then it is that particular
component. The DES are then expected to update their state in accordance with this new

45

event. See subsection 7.5.1 for more information.

Algorithm 3: Model loop
if i← Interface.impulse_available() then

if Impulse i specifies a new user target then
transitionManager.apply_user_target(i);

else if Impulse i is a hardware update then
announce_to_components(i);

else
discard(i);

end
else

end
update_model();
resolve_new_status();
transitionManager.sync_with_model();

Note that, if the Interface provides the model controller with more impulses than it can
process, then it effectively deadlocks, never actually executing an action apart from an
emergency SCRAM.

This ties in to a fundamental assumption we have to make of the hardware, which is that at
some point it, or at least the valid, filtered view of it we see through the Interface, settles
down and gives us enough time to process the events it produces. A platform that generates
more events than can be processed, while technically observable, becomes uncontrollable
because we cannot ever generate a consistent, up-to-date view of the actual hardware state
on which to base our control decisions. The set or number of controllable platforms is
therefore a function of impulse processing and control decision generation speed, which
then provides a ceiling on the number of impulses/events we can handle.

46

Assuming that the stream of impulses does relent at some point, we finally get to use our
model status for deciding what to do.

Algorithm 4: Model loop
if i← Interface.impulse_available() then

if Impulse i specifies a new user target then
transitionManager.apply_user_target(i);

else if Impulse i is a hardware update then
announce_to_components(i);

else
discard(i);

end
else

if Inert, and the TransitionManager has a step s it wants to execute then
a← action_from_step(s);
announce_to_components(a);
execute_action(a);

end
update_model();
resolve_new_status();
transitionManager.sync_with_model();

If the model is inert and the transitionManager has some step to execute, i.e. there is a
schedule to follow or the transitionManager has targets it can generate a schedule from,
then that step is executed.

Previous versions of the solution would attempt complicated “requesting” from the component-
DES, but we realized that this is not necessary, as the model status is already Inert and the
component-DES should be in a state where they are able to follow the schedule, which they
would have cleared if they were not. The drawback of dictating actions to component-DES
is that we lose the ability to have component-DES perform additional investigation or
actions in preparation for a schedule-instructed action.

See Section 7.6 for more information on how the transition manager handles this, and
subsection 7.5.1 for component-DES background.

If the model status is Waiting or Inert, but there’s no step from the transition manager
that’s available, then the model requires external stimulus to continue operating.

47

So the model waits for an impulse, and then deals with it in the same way we deal with an
impulse when is is not explicitly waiting for one.

Algorithm 5: Model loop
if i← Interface.impulse_available() then

if Impulse i specifies a new user target then
transitionManager.apply_user_target(i);

else if Impulse i is a hardware update then
announce_to_components(i);

else
discard(i);

end
else

if Inert, and the TransitionManager has a step s it wants to execute then
a← action_from_step(s);
announce_to_components(a);
execute_action(a);

else if Waiting or (Inert without step from TransitionManager) then
i←wait_for_impulse();
if Impulse i specifies a new user target then

transitionManager.apply_user_target(i);
else if Impulse i is a hardware update then

announce_hw_update(i);
else

discard(i);
end

end
update_model();
resolve_new_status();
transitionManager.sync_with_model();

48

And finally, if model’s status is Active, then the model has to extract the action from the
model state – remember that the Active model status does not refer to a particular action,
but instead the whole model state – and announce to the component-DES that an execution
is about to be initiated, before finally executing the action. In most cases, this would mean
passing the action off to the Interface, but some Read operations have to be performed
locally, as we discuss later in subsection 7.3.2

Algorithm 6: Model loop
if i← Interface.impulse_available() then

if Impulse i specifies a new user target then
transitionManager.apply_user_target(i);

else if Impulse i is a hardware update then
announce_to_components(i);

else
discard(i);

end
else

if Inert, and the TransitionManager has a step s it wants to execute then
a← action_from_step(s);
announce_to_components(a);
execute_action(a);

else if Waiting or (Inert without step from TransitionManager) then
i←wait_for_impulse();
if Impulse i specifies a new user target then

transitionManager.apply_user_target(i);
else if Impulse i is a hardware update then

announce_hw_update(i);
else

discard(i);
end

else if Active then
a← extract_action();
announce_to_components(a);
execute_action(a);

end
end
update_model();
resolve_new_status();
transitionManager.sync_with_model();

Model Status Derivation and PET-Wrappers

Having introduced the model status, what it means for the model to be in specific model
statuses, and how we design a controller loop that takes advantage of them, the question is
now how we derive the abstract model status from more concrete model state. There is,
naturally, an additional requirement for this more concrete state to also encode the actual
state of the model such that it is useful for us. The basic insight that will allow for all this
is that we can derive the model status entirely from the present state of the platform, the
state we expect and the state we target.

49

We collectively call this information, unimaginatively, MIET after its four components:

• Measured state, i.e.

• Inferred state, which together with the Measured state makes up the Present state.

• Expected state, the state we expect to be in. We model E as an Option-Enum that
can either be None, P or T , meaning we either have no expectation of change, expect
the value to remain the same, or expect it to change to the target.

• Target state, the state we target. Can take any value that Present can, with an
additional No to encode that we have no target, instead of targeting an unknown
None value, which may be reasonable in obscure circumstances.

If we combine the Measured and Inferred state into the Present state we can only consider
the PET states. See Figure 7.8 for transitions between implied statuses for a single PET
value.

Unknown
->Active

Read

Infer

ReadSent
->Waiting

ReadSuccess

ReadFail

Known
->Inert

Known
->Inert

SetTarget

Targeted
->Active

Set
SetSent
->Active

Read

ReadProcessFail

ReadSent
->Waiting

ReadFail

ReadSuccess

Figure 7.8: Intended PET interaction/actions. States have rounded edges, transitions are
squres. Transitions specify the action that must happen for them to fire. States have the
model status they imply in their lower half and their name above. “Known” is duplicated
and the same state in both figures.

We can use PET as a wrapper for almost all values/states that we want to influence our
model status with. In our model we use them to wrap the values of conductors we find
interesting (voltage), and whether a particular component has been configured or not.
Alternatively, a PET can also be used without the ability to produce values, then only
deciding model status.

The PET-components also need the ability to encode None-values, to encode the absence of
any information. For the present component we differentiate between Unknown and None
because the state when we can neither infer nor measure a value is different from when we
don’t know it yet.

In Rust we can model a Present<T> as a Option<Option<T>> or as an enum.

To illustrate how to extract the model status from a MIET value we can imagine a function

50

f that takes P,E, T as its argument and returns a model status:

f(p, e, t) =


Inert ⊥
Waiting ⊥
Active ⊥
Invalid ¬(Inert ∨Waiting ∨Active)

We added an Invalid status to catch undefined/impossible combinations. Usually a model
would decide to panic and SCRAM if this state is reached without a known fault, though
more complicated model repair may be possible.

If we are confident in knowing the present state, are not expecting change and have No
target the model is inert.

f(p, e, t) =


Inert p = Some ∧ e = None ∧ t = None

Waiting ⊥
Active ⊥
Invalid ¬(Inert ∨Waiting ∨Active)

If we ever expect the present then we are waiting for information.

f(p, e, t) =


Inert p = Some ∧ e = None ∧ t = None

Waiting e = P

Active ⊥
Invalid ¬(Inert ∨Waiting ∨Active)

If we have a target and are expecting it then we want to take action. Note that this covers
both the cases where we haven’t sent the Set action yet and when we have sent a Set but
haven’t confirmed it through a read.

f(p, e, t) =


Inert p = Some ∧ e = None ∧ t = None

Waiting e = P

Active e = T ∧ t = Some

Invalid ¬(Inert ∨Waiting ∨Active)

In addition, if we don’t know the present value we should endeavour to find out:

f(p, e, t) =


Inert p = Some ∧ e = None ∧ t = None

Waiting e = P

Active p = Unknown ∨ (e = T ∧ t = Some)

Invalid ¬(Inert ∨Waiting ∨Active)

51

But halt! This way we may be Active when we should be Waiting. We choose to only be
active if we wouldn’t wait otherwise.

f(p, e, t) =


Inert p = Some ∧ e = None ∧ t = None

Waiting e = P

Active ¬Waiting ∧ (p = Unknown ∨ (e = T ∧ t = Some))

Invalid ¬(Inert ∨Waiting ∨Active)

It is not immediately clear what to do if we do know the present state, are expecting no
change but have a target. If we consider it a valid state then it could be either Inert, if we
think that not expecting any change is uniquely inert, or Active, if we want there to be a
e = None, e = T, e = P sequence whenever we set a target. We choose here to consider it
an Inert state. This gives us more fine-grained control over when we want the model to act
on a target and allows us to tell the model about future targets that are not active yet.
Because implying an Inert state also effectively makes the model ignore the value in this
PET-wrapper, this state becomes a “Hint” to the rest of the platform.

f(p, e, t) =


Inert p = Some ∧ ((e = None ∧ t = None) ∨ (e = None ∧ t = Some))

Waiting e = P

Active ¬Waiting ∧ (p = Unknown ∨ (e = T ∧ t = Some))

Invalid ¬(Inert ∨Waiting ∨Active)

We note here that the PET value is not sufficient to, for example, know which action we
should take. All the Active status means is that there is something to do, but a little bit of
additional state is required to differentiate between the case where we have sent a Set and
when we send a Read to confirm.

7.3.2 Model Controller Operation

Having specified the model controller loop, model status, and how to derive it, we must
now discuss how exactly the model controller implements the actions from the control loop.

We will skip over discussions of how the model controller communicates with the interface,
as that is discussed seperately in Section 7.4.

When the model controller receives a hardware event or executes an action, then that
constitutes novel information about the hardware, and the affected component-DES must
be informed about its existence.

The rules for which components get informed are rather simple: for events and actions
that affect a conductor they are distributed to all components that have an in- or output
connected to the conductor. If the event or action instead targets a specific component
(anything that involves configuring a component, for example) then only the affected
components DES is told about the event.

To extract an action from the model we go through all components and conductors in the
topological order of the power-net. For every component and conductor, we compute the

52

action implied by their PET-wrappers (voltage for the condcutors, the configuration for
the components).

Ultimately, we only want to extract a single action, and so we choose them according to
this hierarchy:

• Lowest in the power-tree, implying a Wait.

• Lowest in the power-tree, implying a Read. (via the readNext boolean value that we
added to every conductor-PET wrapper), or a Write/Configure. Tie-break in favour
of Reads.

The highest priority should naturally be to wait for another action to complete, otherwise
we could end up in a situation where we are constantly starting new actions. We want
to ensure, however, that we only ever have a single request to the hardware outstanding,
because one action may override another if we are not careful (Allowing multiple pending
Reads, but only a single Write, at any time may be doable, but we do not consider this
further).

We then follow the simple logic that whichever action is lowest down the power-tree has
the highest potential effect on the rest of the power-tree and should be prioritized.

Whether to favour Reads or Writes is a non-trivial question. If we favour Writing, then
we may reduce the amount of time wasted on Reading state when a component wants
us to correct a fault. Preferring Reading makes sure that the model always reflects our
best possible understanding of the actual hardware state. We compromise by preferring
whichever is lowest down the power-tree. This still makes is possible for the power-tree
to be well-known as far up as necessary, but required Writing still gets done once the
state-defining lower power-tree is resolved.

Once we have extracted an action, we announce the action to the relevant components, as
described above. When executing the action, it is sent off to the interface, unless it is a
Read action for a conductor value.

While all actions are not always executable, for all actions except Reads this is an automatic
failure condition and the interface can reliably report it back to us as such. For Reads,
however, it’s possible for a conductor to not be monitored, and thus not be readable, but we
still want to be able to “read” the conductor value for simplicity. What we do in this case,
is to “infer” the vaule of the conductor, by looking up the value that is currently assigned
to the conductor according to our model and then injecting the result into an impulse.

Note that this is a fair thing to do, because if we are reading the output of a conductor
then its inputs are known and the component-DES considers them certain, otherwise we
would have extracted and executed the action to ensure that some input is consistent.

Extracting an action from a schedule step, announcing and executing it works in much the
same way as it does when extracting one from the model.

7.3.3 Configuration Management

Configuration management involves keeping track of the dynamic values of conductors,
inputs and outputs and returning them to whoever requests them.

When a device is configured, in addition to actually executing the action, a copy of the
configured in-/output limits and exact assignments are saved in the configuration manager.

53

When components later want to test the value of an in- or output they know has been
configured to a certain value, they, or the controller, query the configuration manager for
them.

7.4 Interface

Knüsel [3] reduce their interface to the actions

• Set

• Configure

• Wait

• Monitor

and then translate these calls into python code that can be used as a sequence in the
existing Enzian power manager.

We maintain the interface from Knüsel [3], but replace “Monitor” with “Read”. The monitor
action explicitly waits until a certain monitor has reached some value, which we do implicitly.

Using a PET state (p, e, t) for waiting we can ensure that e = P whenever we wait and
reset it to e = None whenever we receive a wait result. If we keep p = None and don’t
change it, we keep switching between Inert and Waiting. Because the model status prefers
Waiting over Active we are certain that no two wait actions conflict.

7.4.1 Hardware Interaction

For each command the interface decides how to execute it based on parameters it is provided
with.

Setting the BMC output B_PSUP_ON to 1, for example, requires interacting with the
GPIO pin of the same name on the BMC.

Reading the value of the monitor V DDH from a MAX20751, on the other hand, is a
blocking I2C call the result of which is passed back asynchronously to the model.

7.5 Present State

Before we dive into how we can keep track of the present state of the hardware we have to
re-affirm our view that this is a fundamentally hopeless endeavour.

Assuming a supernatural ability to completely freeze the hardware whenever we are
deliberating its state we could conceivably build a model that accurately reflects the
abstract state of the hardware at that particular point in time. Because the full internal
state of controllers, and especially consumers, is

• not measureable

• not documented in sufficient detail

we cannot even build a model granular enough to keep track of it.

54

Re-introducing real-time we find that the hardware, as an independent, dynamic structure
can change fundamentally while we are still reacting to the last bit of information we got
from it.

Thus, talking about the present state we have to add the caveat as far as we can know it.

If the complexity here is not appropriately handled and no suitable interface for querying
the present state provided, then it can easily seep into, and complicate, every part of a
solution that wants to know the state of the platform, which happens to be most of it.

This section describes both the difficulties with determining the present state of the platform
and our attempt at dealing with them.

7.5.1 Component-DES

As hinted at when describing our platform model at a higher level, we intend to partially
sidestep the complex issue of determining the present state of a component by offloading
that responsibility to a user-provided, per-component DES in one form or another.

We will now provide a specification first for what we require the DES to take as input, and
what we need as outputs, and then a set of “guidelines” and examples for the behaviour the
DES should implement to work well in our system.

In- & Outputs

A DES takes as input a single event, which it consumes and uses to change its internal
state. Once it has consumed the input event, it may also change what it outputs. A DES
may explicitly not change its outputs without an input event.

As a quick overview: a DES for component C receives information from the model controller
via events informing it of both the initiation and the completion of hardware changes, when
they concern connected conductors or component C’s state directly. The DES then outputs
an abstract state representation and transition information that the transition-manager and
the rest of the system can work with, as well as request changes to its connected conductors
and its configuration status via PET-wrappers.

In more detail, a DES for a component C receives events from the model controller informing
it of events in two classes: events concerning a connected conductor and events concerning
the component itself. The events concerning a conducer can be further broken down into
those connected to a input and those connected to an output. A DES will only receive
events that relate directly to it or the conductors it connects to, no events concerning any
part of the rest of the platform.

Because we expect the DES to keep only minimal state, the DES is informed both via event
when a hardware change is initiated as when when it is completed, so that expected and
unexpected events can be distinguished. We refer to the these two complementary events
as “Initiate” and “Complete” events.

When we specify that an event is parametrized we mean that it carries value information,
usually a specifying a range of values.

The DES is informed about the following events:

• Read, Infer: Parametrized, initiated hardware events that inform the DES that a
particular value or range was read or inferred for a connected input. These events

55

share an initiation event, which is simply a Read, because for our model we do now
know that we will infer a value until we can read it.

• Alert: A parametrized, uninitiated hardware event. Carries information about the
component/input/output affected, for components the type of fault, for conductors
the implied value range, and a severity of either FAULT or WARNING.

• Configure, Deconfigure: An unparametrized, initiated hardware event informing the
DES that the component has just been configured or deconfigured. The actual values
used for configuration are determined outside the DES, which only needs to know
that the action has occurred.

• Write: A parametrized, initiated hardware event that gives feedback when a controller
output is written, like the GPIO pins on a BMC. Regulator outputs are not written,
but have their values set via configuration.

• Wait completion: An initiated event informing the DES that a Wait request this DES
had was serviced. Not parametrized, as that would require the DES to keep track of
remaining wait time.

• Failed: A wrapper event for any of the other complete event types. This communicates
that there was an attempt at Reading or Configuring a conductor or component, but
the execution failed. This is separate from a “Fault”, because a “Fault” communicates
that something happened unprompted, whereas a Failure happens explicitly because
of some action we attempted. An initiation event cannot fail.

Optionally, a DES may output commands to inform the rest of the system that something
fundamental about the component has changed that is impactful outside of it, or that it
requires some service that it cannot be expected to provide itself, for example the relative
timing of events. These may be emitted after each event.

• Invalidate Sequence: Must be emitted if either the abstract states this DES outputs
change, or the transitions between them.

• Invalidate target platform state cache: Must be emitted if the abstract states this
DES outputs change, to inform the transition manager that it has to clear any caches
it may keep. If only the transitions between states or the transitionary present state
changes, then invalidating the state cache is optional.

• Target state: A component can request a new target state for itself. This target
state is push’ed to the transition manager for sequencing and execution. This feature
should be used sparingly and only if strictly necessary, for example after a fault or
warning.

• SCRAM: Orders the model to immediately SCRAM.

• Wait: Asks the model to halt operation for a specific amount of time, in milliseconds.
Useful to enforce component delay requirements.

It is very important to note that, apart from a SCRAM, these can currently only be
executed in addition to and not in lieu of whatever prompted their emission. A requested
target state will thus only potentially be targeted much later, for example.

A DES is only useful, of course, if it produces an output, which in our case consists of the
following:

56

• For every in-/output as well as the configuration state of the component, a PET-
wrapper.

For the configuration state this is a PET-wrapper boolean that is expected to carry
actual configuration information, i.e. whether the component is configured or not.
The configuration-PET must not ask to be read, only written, because configuration
information cannot currently be recovered from the platform.

For the component in-/outputs the PET-wrapper contains either a value/range or a
CONFIG marker that implies that the current value for this in-/output should be
read from the configuration cache.

• Optionally, a full, reduced Knuselian abstract state (see subsection 7.5.3) set including
a a designated state from that set that is the “present state” of the component. This
state set must include transition information for all the states.

Optionally, the present state can be a virtual “transitionary” state that is only used
for finding sequences, but not target platform state computation. A transitionary
state sits in-between two full states, has the same assignments as the last full state
the component was in, and dynamically calculated requirements and transitions to
either full state. These transitionary states become necessary if we want to be able to
invalidate sequences and then re-calculate them, the alternative would be to return
all components to full states whenever we invalidate the current sequence, which may
not always be possible and involve tedious manual computation to reverse the already
executed sequence, which we just determined to be invalid and couldn’t serve as a
basis for this new sequence.

Theory of Operation

The component-DES has threefold functions: to expose the current state of the component
to the model via its outputs, to force the model to take corrective action if the safety of the
component is jeopardized, and to ensure safe operation of the component.

The component-DES does not have other control responsibilities, and is, as far as possible,
told what to do and only makes independent decisions when absolutely necessary. An
example of behaviour that does not fall under component-DES responsibilities is, for
example, repeated reads until a certain condition is met, if that is required for sequencing.
The intended way to solve this would be to have the sequencing explicitly request multiple
reads, and for the component-DES to return to the same original state every time. A
component-DES would, however, absolutely be allowed, and even expected, to do a “Wait
Until” if it is required for the safe operation of the component.

The component-DES is also expclicitly expected to ensure that the components sequencing
requirements are observed, for example by only confirming that an in- or output has changed
once it has been confirmed by a Read.

That said, the exact reason for using these complicated DES for component control is that
we expect commponents to have idiosyncratic, unpredictable behaviours, it is difficult to
write a behaviour specification with the same level of strictness as the description of what
the in-/outputs of the DES should mean.

Nonetheless, to make it possible for separate DES to work in harmony some behavioural
ground-rules are necessary:

57

1. If a DES ever looses track of the exact component state, suspects it is out-of-sync, or
receives an otherwise unexpected event, then it is appropriate for the DES to ask for
a SCRAM. Ideally, the DES tries to re-establish a coherent state, but a scenario like
this implies either an, at best, unusual system state or a configuration error, both of
which should be considered critical.

2. When a DES consumes an Initiate event it should be ready to receive the associated
complete event.

3. A DES should start out in a state where it is “inquisitive”, i.e. where it does not have
a present state and uses its component in-/output-PETs to signal that it wants to
read the value of at least its inputs.

4. When a DES advertises a state transition and that transition occurs normally, barring
any faults or other events, then the DES must emit a state congruent with the
transition having occured. This requirement is vital to the proper functioning of the
sequencing.

5. When a DES outputs a target state request that target state must be reachable within
the currently emitted states.

6. A DES should try to simultaneously accomodate as many different events potentially
occuring as possible. A DES should be prepared to deal with, for example, component
in-/outputs being read without the DES requesting it, but also ingest the information
gained from such events. This requirement can be important for keeping the diferent
DES synchronized.

We are confident that a power-tree of components with DES implementing these requirements
will be able to function properly.

Realization

While we want to call attention to the fact that many valid implementations of such a
DES are possible, we choose here to view it as a DFA, or discrete finite automata, for two
reasons:

• DFAs are still very general and many alternate implementations could be interpreted
as being abstracted by a DFA.

• DFAs are well-studied and have great potential for optimization, analysis or specifica-
tion based on this research.

Another benefit to using a DFA is that its construction is rather simple, and our descrip-
tion the component-DES’ interface and capabilities map to DFAs without much further
elaboration: a DFA that implements a DES takes on states that emit the outputs the
component-DES specifies, and the DFA state transitions take as “symbols” the input events,
again as specified by the component-DES.

We unfortunately will have to leave the, very intriguing, further investigation of the encoding
and design of these DFAs as future work.

7.5.2 Reading Hardware State

When a Read action is executed by the model controller for some conductor c, then the
model controller must first check if c is monitored in the present model state. If c is

58

indeed monitored, i.e. at least one monitor is active that is connected to c, then the model
controller sends a Read request to the Interface.

If c is not monitored, then we cannot ask the hardware for the actual value of conductor c,
and have to fall back on inference.

Inference is a potentially highly complex operation, but we drastically simplify it by means
of our component-DES, whose judgement on their outputs we must trust, and the simple
assumption that for the whole power tree below c, the present state is known and accurate.

Under this assumption, we infer the value of c to be whatever the component-DES of the
output connected to c says it is. For this we check the output-PET the component-DES
emits and either extract the value directly or look it up in the dynamic configuration, if
the output-PET’s value is CONFIG.

This avoids the rather tedious business of inferring values down the power tree, but luckily
we can convincingly argue that an input’s value only changes when the connected output
changes, making the output connected to a conductor the principal authority on the
conductors value. The component output is itself determined by its inputs. Assuming
the output of a conductor changes, but its inputs don’t, and this process generates no
fault or other event, then the platform is not properly observable and does not follow
a fundemantal assumption we have to make about it in order to be able to control it.
Generally, whenever two hardware states that differ in their semantics, and that difference
is relevant, are indistinguishable from one another, then observability is violated and in
most cases controllability as well. But because the occurrence of such a scenario is, by
definition, unobservable, we cannot react to it all, including emergency measures like a
SCRAM. A platform that does, and one that does not, behave in such unobservable fashion
are themselves indistinguishable, and so it is up to us to decide which one of these we
assume for a platform. Since the unobservable option is not useful, we pick the observable
variant.

Returning to our discussion of inference, we are allowed to assume that the power-tree
below c is known if we pick Read actions in bottom-up order relative to the power-net and
prioritize them over Writes and Configures.

7.5.3 Restricted Knuselian Component States

To model the present state we mostly follow Knüsel [3], but will introduce additional
restrictions that make our dynamic solution more feasible.

Basics

The two major building blocks of the platform state are

• Conductors, or sometimes “wires”.

• Components.

We will divide the components into separate classes later. For now we simply assume that
they all have

• A unique name

• Ports:

– Inputs, to which conductors can connect.

59

– Outputs, to which conductors can connect.

• Monitors, which inform us that a ports value can be Read by querying the component
in some way.

• Alerts, which inform us that this component can raise alerts for a certain inputs
values.

• Some abstract states, that “require” inputs and “assign” outputs.

Ports also define a safe range of operation. The Free assignment makes use of this to reduce
some of the tedium of maintaining a specification.

We define the Ports to have a Type:

• Logical, with a restricted subtype Boolean

• DC

A Conductor may connect one output to any (positive) number of inputs, but the output
must have the same Type as all the inputs it connects to. Indirectly, this also makes the
conductor type the type of the output they’re connected to.

A component state is a named set of distinct input and output assignments, that includes
transition descriptions to other component states.

Partially following Knüsel [3], we allow Assignments in one of three forms:

• Value assignments assign a static value to an output

• Value-Range assignments assign from a static range of values

• Free assignments are shorthands for Value-Range assignments, with the range being
the whole safe range of the output.

• InputMatch assignments specify an input to match and assign to the output the
value of the input. InputMatch assignments significantly complicate state generation
and sequencing, but are necessary for modelling the Enzian, which includes clock
multipliers that pass through input frequencies with an optional multiplier.

Requirements are much simpler than assignments. A requirement simply refers to a
component input, and includes minimum and maximum values that the input may take.

Restrictions

Our state so far allows components to inhabit, and change into, arbitrary states. This will
be significantly restricted in this section, firstly to make declaratively specifying them less
tedious, but also to allow state and sequence generation to be performed relatively quickly.

Fortunately the voltage regulators and consumers on the Enzian are relatively well-behaved
(as Schult [2]) has previously noted), which allows for these restrictions without impeding
our ability to model and control an Enzian.

We start out by requiring that component states have a name that is unique within that
component, and that between these states there are “transitions” that describe how, and
if, one state can be reached from another. In this thesis we will not investigate a model
where states can have arbitrary, or absent transitions between them, instead ruling that
the states of a component form an ordered sequence, and that states can transition into

60

those states that are their neighbours in this order. To transition into a state that is not
the direct neighbour of a state, it must successively transition into the neighbouring states
between the source and target state.

Each of these “transitions” is made up of a sequence of “transition step sets”, each of which
is a set of “transition steps”.

Two neighbouring states must either have at least one differing input requirement, or at
least one of them must have some meta-information attached to it that makes it clear
that some action must be taken to transition into it. The second case is to enable the
“Configured” state that we introduce later on, which actually mandates that it has the same
input requirements as the previous “Powered” state, but is meaningfully different from it in
that the component has to be configured, via an explicit action, to reach the “Configured”
state, and deconfigured to return to the “Powered” state.

Transition steps always relate to input requirements, and both elements of a transition step
must refer to the same input. Component outputs, according to our interpretation, do not
change in-between states, only when we fully transition into a new state. A transition step
from state a to state b for input i has two components: an optional source requirement and
an optional target requirement. The source requirement describes the input requirement
that the source a imposes on i, and the target requirement the same for the target state
b. The optionality of the source and target requirements makes it possible to have states
that “don’t care” about an input’s value, which is important for encoding the difference
between a component that requires that an input has a specific value right before and after
it changes, and a component that only imposes the requirement that the input has retained
a value until this step (a (Some requirement, No requirement) transition), or has reached
a certain value after it (a (No requirement, Some requirement) transition).

A transition step fulfills the invariant that the source requirement differs from the target
requirement. Between two states that have the exact same input requirements there thus
does not exist a transition step, unless they carry some meta-infomration as previously
defined.

We notice that most of the complex states and transitions are lost on the Controllers and
Regulators of the Enzian, so we restrict them to a specific subset of states. We call these
states “Knuselian”, because they were formalized in Knüsel [3].

• “Off”, in which a Controller/Regulator is as turned “off” as it can be.

• “Powered”, describing the common in-between state when a component is not “off”,
but also not doing anything useful yet.

• “Configured”, which is an abstract state into which a component can be “configured”,
usually through I2C. The “configured” state must not differ in requirements from the
“powered” state and must not assign voltages different from “Powered”. We model an
internal “configured’ PET-wrapped boolean value to differentiate between a configured
and unconfigured component. We can assume that a component is not configured if
it is not producing any output.

The “configured” state is also the minimum state that a component must be in for us
to consider any monitors it defines to be accessible.

• “On”, where they may assign voltage to their outputs.

We order these restricted states from least (“Off”), to most (“On”) active.

61

The difference between Controllers and Regulators is principally that controllers may change
their outputs at any time, while we require Regulators to re-enter their “Configured” state,
be re-configured and may only then turn on again.

We now introduce the third type of component: the Consumer. Consumers have no outputs,
they are “leafs” of the power tree and only “consume” the power provided to them, as far as
we are concerned. Unlike Controllers and Regulators, we allow the specification of arbitrary
states for Consumers, and for now arbitrary transitions between those.

Our Controllers, Regulators and Consumers are now all roughly “Knuselian” as in [3].

Compared to the Knüsel [3], we restrict our states in three major ways, one of which was
already mentioned previously:

• Every state must always explicitly assign to every one of the components outputs.

• All states must have either one or two “neighbour” states. At most two may only
have one. This restriction removes “choice” from the sequencing, which is one source
of potentially exponential complexity growth.

• Over all their states, each requirement/output may only change once per port. This
includes changing from “No requirement/assignment” to “Some arbitrary value”.

These may seem like severe restrictions, but they allow for state and sequence generation to
be significantly simplified, which we argue is required for online, dynamic power management.

Supporting Change

(Un)fortunately for us, we cannot be content with a static view of the platform. We have
to be able to track and expect changes.

The previously introduced MIET/PET values (Section 7.3.1) are our proposed solution to
at least part of this problem.

From the models perspective, every conductors state value and every components “configured”
value has a PET state.

This will allow us to differentiate between most of their various states as they change.

Evidently we need some way to differentiate between the state of “take an action and Set”
and “take an action and Read ”, which follow right after each other.

For this purpose we attach to each PET state a boolean NextRead, which should be true
whenever the next action to take is to Read.

7.6 Platform State Transition Manager

The full name of this component should be be “Platform State Transition Manager”, as it
does not manage lower-level transitions directly. For brevity’s sake, we will refer to it as
“transition manager”.

The transition manager is in charge of the successful transition of the platform from one
state into another.

The first factor that makes the transition manager’s work non-trivial is the fact that the
target states the transition manager is supplied with are underspecified, “CPU on” for

62

example, and have to be resolved to a complete target platform state that assigns states to
all components and value ranges to all conductors.

The second is that finding a valid sequence between two fully specified target platform states
is, in general, a hard problem. Luckily, with the restricted Knuselian states (see subsec-
tion 7.5.3) we introduced, the problem becomes significantly easier and less computationally
expensive to solve, but remains non-trivial.

In addition, once a transition sequence has been found, the transition manager is responsible
for returning to the model a valid step to follow, on request, which also includes keeping
some internal state up-to-date with the model so it knows which step can be executed next.

A note on nomenclature: We use the term “transition” when we talk about a change from
one state to another, either two platform states or two component states. A “sequence” is a
precise set of steps encoded in a suitable format that allows us to execute a “transition”, if
the steps in the schedule are followed in-order. Alternatively, we sometimes use the name
of the precise datastructure we use to implement our sequence, which is a DAG or a graph,
instead of “sequence”, or sometimes in combination, as in “sequence-graph”. A “schedule” is
a datastructure that may contain a schedule and additional information for following and
re-generating a sequence. In our case, a schedule keeps track of the steps in the sequence
that are “ready” or “completed”, and thus allows following a sequence step-by-step.

7.6.1 Target Platform State Resolution

To find a sequence we first must find out where we want to go.

In the abstract, target state resolution is a function that, given a platform model M and a
target state T , computes value ranges the conductors take if the platform fulfills the target
state T :

T (m, t)→ C × (R×R)

If the mapping

State 7→ Conductor × (R×R)

i.e. the restrictions imposed on a conductor by some state, is computationally cheap to
compute, and in our case it is, we can take an intermediate step and find the target states
components must be in, before mapping these onto conductor range restricitons.

Knüsel [3] use something similar to the second approach, but replace a cheap mapping
function with a more powerful OMT solver. They split sequencing and target state finding
into two steps because using a single OMT instance would take too long, presumably due
to some superlinear complexity growth with respect to problem size.

We are motivated similarly: Because we identify a cheap way to find a sequence (see
subsection 7.6.2) from a present, known, platform state to some valid target platform state
we also use two steps to find a sequence.

Target Platform State Precomputation

We describe the first step in our target platform state generation algorithm, which pre-
computes target states offline, one for each component state.

63

See Section 7.6.1 for the second, online fusion step.

The idea behind this approach is to minimize the time it takes to generate a target platform
state once we have precomputed the target state cache. Overall, we can expect most
platforms to be stable almost all of the time, so expending the precomputation effort
initially makes sense.

Our approach works like so:

For each state si we can precompute the platform state. We sidestep the complexity of the
nested, and potentially recursive, manual resolution by modelling platform state resolution
as an MIS problem.

Intuitively, we create a graph G with a vertex per state s ∈ S and connect incompatible
states, as well as all states of a single component. We then find a MIS on G. If the MIS
has size |C| then the vertices in the MIS assign a single state to each component without
violating any incompatibility restrictions.

Note that since G contains |C| connected components a maximal independent set of size
|C| is also a maximum independent set of G.

We augment our intuitive description with a more formal one:

Let G = (V,E) be a graph with V = {vc,s | c ∈ C, s ∈ c.states}.

We add edges connecting the states of each component:

ES = {(vc1,s1 , vc2,s2) | c1 = c2 ∧ s1 6= s2}

And connect states that are “incompatible” according to some incompatibility predicate PI

E = ES ∪ {(vc1,s1 , vc2,s2) | PI(c1, s1, c2, s2) = true}

We can now re-use G to solve arbitrary component target states T ⊆ {(c, s) | c ∈ C ∧ s ∈
c.states} like so:

We create a new graph Gm = (Vm, Em), Vm = V,Em = E where all component target
states vc,s, (c, s) ∈ S are pre-marked, i.e. added to the future-MIS set M already.

We complete the MIS M on Gm. If |M | = |C| then we extract a state assignment

target[c] = s : vcs,s ∈M ∧ c = cs

To increase confidence in our solution we prove two theorems about our solution, showing
that if we find a solution, it is correct:

Theorem 2. |M | = |C| =⇒ M only assigns a single state per component.

Proof. Trivially, because all vc,s states of a component c are connected no MIS M can
assign multiple states to the same component, as otherwise the set is not independent.

Theorem 3. |M | = |C| =⇒ PI(c1, s1, c2, s2) = false for all vc1,s1 , vc2,s2 ∈M .

Proof. Trivially, if PI(c1, s1, c2, s2) = true for some vc1,s1 , vc2,s2 ∈M then there exists an
edge between vc1,s1 , vc2,s2 by construction and no independent set on G can exist containing
both Vc1,s2 and vc2,s2 , which was our assumption.

64

We must unfortunately leave the proof of the theorem that the existence of a target platform
state implies the existence of an MIS, and that we find it, as conejecture.

Incompatiblity Predicate We can now continue by defining our incompatility predicate,
that defines which states cannot be enabled at the same time.

As a basline, trivially incompatible are the states of a single component, because a component
cannot be in multiple states at a time. From this we can now iteratively develop the
incompatiblity predicate PI :

PI(c1, s1, c2, s2) ∈ {true, false}

by going through arguments for which it evaluates to false.

The predicate takes as its argument two pairs (ci, si) denoting that component ci is in state
si. We will usually use i ∈ {1, 2}.

Let c1 6= c2 and w.l.o.g c1 has an input i, c2 has an output o such that (i, o) ∈ conductors.
Trivially s1, s2 are incompatible if s2 assigns to o a value that is outside the safe range of i.
We also decide that s1, s2 are incompatible if s2 assigns to o a value that is oustide the safe
range of o, which effectively makes it impossible to enter state s2.

For the remainder we assume additionally that s1 requires that i has some value r ∈ [rl, ru].

s1, s2 are trivially incompatible if s2 assigns to o some range a∩ r = ∅. And this is the first
time we encounter a non-trivial incompatiblity: we have to consider “siblings”. Assume
sibling component cs with input is such that (is, o) ∈ conductors with some state ss that
imposes a requirement rs on is.

If rs ∩ r1 = ∅ then the two states trivially are incompatible. This is a necessary, but
sufficient, check because if

a ∩

 ⋂
ri∈R

ri

 = ∅

meaning the assignment a is incompatible with the set of requirements R, there either
exists an ri such that ri ∩ a = ∅ or a pair ri, rj with ri ∩ rj = ∅.

The second non-trivial incompatibility involves the unusual o = InputMatch(i) assignment,
which states that the output o will, in this state, have the same value as the input i is
receiving. We note that InputMatches can be chained. By essentially “passing through”
an output from lower down the powernet this introduces exciting new incompatiblity
opportunities:

See Figure 7.9 for an overview of the different state incompatibilities of InputMatches.

Whenever we encounter an InputMatch(i) with an output o connected to i, we have to
consider all states that assign a value to o, so for each output connected to an InputMatched
input we can gain new siblings, to which we must apply the same incompatibility check as
above.

For InputMatch assignments we naturally do two trivial checks: One for the outputs safe
values and one for the inputs.

For a terminal assignment at to output ot by some state st that does not continue the
InputMatch chain we can again test for compatibility with the siblings introduced by ot,
but also finally with at.

65

s1

s2 → o2 = IM(i2)

s5

sx

s3 → o3 = IM(i3)

s4

sy

i1

o2

i2

a5

o3

ix

i3

a4

o4

iy

Figure 7.9: Figure showing the possible state incomaptibilities introduced by successive
Inputmatches. s1 is the base-state under consideration. States that can be incompatible
are connected with dashed lines. Siblings of s1 are in gray circles.

Realization We realize Target Platform State Precomputation as an Integer Linear
Program. We could, of course, also implement the target state computation as a SAT
problem, which our testing indicates could even be even faster, but using SAT will only give
us an arbitrary target state when we are actually looking for a platform state where every
component is as “off” as possible. There is, essentially, a hidden optimization requirement
baked into the problem. To solve exactly these kinds of “optimization” problems with SAT

66

solvers there has been work on SAT solvers with preferences, but these have unfortunately
not been widely implemented and we did not expend the effort of implementing one ourselves.
ILP was deemed to strike the best balance between implementation effort and speed, and
is thus recommended.

The incompatibility predicate can either be implemented by considering each pair of states
and then recursing on InputMatches, or considering each pair of states and then trying to
find an InputMatch-path between the two. We find the recursive approach more intuitive
and also likely faster than the purely-pairwise approach.

Online State Fusion

Once all the pre-computation effort has been expended we can now reap the rewards.

Given targets Ti, Tj with precomputed platform states Pi, Pj we can compute a combined
platform state P∪ like so:

Algorithm 7: Target State Fusion
P∪ ← ∅;
for each component C do

P∪[C]← maxi,j Pi[C]
end
CT ← conductor target ranges;
/* Sanity check: */
for targets t do

Ensure(t ∈ P∪)
end
for neighbouring pairs of components (C1, C2) do

Ensure({P∪[C1], P∪[C2]} /∈ E);
end
for each component C do

Ensure that requirements in state P∪[C]match conductor target ranges;
Ensure that assignments in state P∪[C] match conductor target ranges;

end

In the following we will attempt to give an intuition as to why this approach works and
why the “sanity check” is necessary.

Proof. Consider a power tree P with some components Ci ∈ P . We associate with every Ci

a range of possible states it could be in given the rest of P , which we call Ri = [ri,1, ri,2].

For some set of restrictions that currently apply to Ci, call them Rx ∈ Xi, we can calculate
Ri as follows:

Ri =

[
max
Rx∈Xi

rx,1, min
Rx∈Xi

rx,2

]
If we artificially restrict the state of some components, say by giving them target states, we
are adding new restrictions to Xi and further restricting the state Ci may be in.

Consider now some target platform states Tk. Each of them has associated with it a set of
restrictions Xk,i for each component i.

67

If we combine the target platforms states Tk into TC =
⋃

k Tk it follows that XC,i =
⋃

kXk,i

and
RC,i =

[
max

Rx∈XC,i

rx,1, min
Rx,∈XC,1

rx,2

]
But crucially,

RC,i =

[
max

Xk,i∈XC,i

(
max

Rx∈Xk,i

rx,1

)
, max
Xk,i∈XC,i

(
min

Rx,∈Xk,i

rx,2

)]
=

[
max
Tk∈TC

(rk,i,1) , max
Tk∈TC

(rk,i,2)

]
And finally

Fi = max
Tk∈TC

(rk,i,1)

is exactly how we compute our fused state Fi, and so as long as

max
Tk∈TC

(rk,i,1) ≤ max
Tk∈TC

(rk,i,2)

i.e. there exists a valid target platform state at all, our state fusion returns a valid platform
state.

This confirms that our approach can generate a valid platform state, but also explains why
we have to check if the platform state we generated is actually valid.

7.6.2 Sequences

Single-transition Sequences

Similar to target state computation, generating single-transition becomes, comparatively,
simple with our restrictions.

For sequences where every conductor only changes – or “transitions” – once, we can iteratively
build a schedule-DAG S = (V,E) that orders conductor and component state changes.

We begin by adding to our schedule graph two vertices per changing conductor ci ∈ CC:
one indicating that the conductor is permitted to change, ci,p, and one indicating that the
conductor has already changed, ci,h.

V = V ∪ {ci,p, ci,h | ci ∈ CC}

A conductor has to change strictly after it is permitted to do so, so we can add our first
sequence requirement:

E = E ∪ {(ci,p, ci,h) | ci ∈ CC}

And already we only have two more things to consider: restrictions imposed by state
transition requirements and restrictions imposed by state assignments.

For every component dj with sp = statepresent(d) 6= statetarget(d) = st we add two vertices
per state si: one indicating that the state s has been reached, sj,i and a second one we’ll use

68

for sequencing that requires state si to be reached, but is not required for the component
to reach si itself, sj,i,post. Of course post happens strictly after the proper state has been
reached.

V = V ∪ {sj,i, sj,i,post | dj ∈ D, si ∈ states(dj)}
E = E ∪ {(sj,i, sj,i,post) | dj ∈ D, si ∈ states(dj)}

We first deal with the restrictions imposed by assignments. For a component dj with
sp = statepresent(dj) 6= statetarget(dj) = st by convention every state s : sp ≤ s ≤ st assigns
a value to every output of d and the conductor ci connected to that output. If c ∈ CC,
then there are states sm, sn : sp ≤ sm < sm+1 ≤ st that assign different values to ci.

For our first proper sequence requirements we can now say that the conductor change of
ci has to be permitted strictly before any transition steps from sm to sm+1 are executed,
because we do not know which one of these will actually cause ci to change, only that it
has changed once sm+1 has been reached.

E = E ∪ {(ci,p, sj,m,post)}

And conductor ci only changes once sm+1, which actually assigns the target value to ci, is
active:

E = E ∪ {(sj,m+1, ci,h)}

We know that sm+1 is the state that assigns the targeted value to ci, because the assignment
to a conductor is only allowed to change once between two states of a component.

A special case that is only necessary for some interpretations of the schedule graph are
controllers that do not change state. Regulators in the same situation are unable to
change their output, but controllers can. If the schedule graph is expected to contain all
assignments as edges as well as vertices, which is not required, or to be made more readable
for debugging, then for each controller that does not change state we add a vertex for that
state and connect it to the cx,h conductors that the controller state assigns to.

Having dealt with the assignment of conductors we can finally move on to discussing the
state transition requirements. A component can of course only be in a single state at once,
and a strict order on component states thus has to be enforced.

We call the changes necessary to go from one state to the next “transitions” as a whole, and
the atomic changes happening to the requirements of a single input “transition steps” or
“steps”. For example, for two states s1, s2, with s1 requiring input i = 0V and s2 requiring
i = 5V we can encode this as a transition step from s1 to s2 with (i, 0V, 5v). Note that
it is possible for a step to involve at most one “None” requirement like (i, 5V,None) or
(i,None, 5V) to accomodate situations where

For regulators and controllers we rule that all transition steps between two states can
happen in any order and still be a valid. For consumers, however, this does not hold. The

69

ThunderX CPU on the Enzian, for example, imposes transition restrictions in “groups”,
which we will now call “step-sets”. The steps within a set may happen in any order, like an
unordered set, but the step-sets within a transition must obey the order they are defined in.
For controllers and regulators we model their steps as being part of a single step-set.

To illustrate how we can enforce these sequence requirements in our DAG we consider
an example transition from s1 to s2 with two step-sets P1 < P2, P1 = {p1,1, p1,2}, P2 =
{p2,1}, p1,1 = (i,None, Some), p1,2 = (i, Some, Some), p2,1 = (i, Some,None).

For the sake of brevity we use a < b as E = E ∪ (a, b) and omit the explicit adding of
vertices to V .

We first add four vertices s1,post < startP1 < endP1 < startP2 < endP2 < s2 to enforce
inter-stepset order and that they happen in-between the two states.

For steps with no initial requirement, like p1,1, we simply enforce that they happen before
their stepset ends, because the “None” requirement indicates that we do not care about the
value of the input before this stepset, only after: p1,1 < endP1 . For steps with no terminal
requirement like p2,1 we apply the same principle in reverse: startP2 < p2,1, as this step
does not care about the value of i after its execution.

If the step is a command-step then we add a vertex denoting it as such and use use that
in-lieu of the step above. If the step concerns a conductor changing, then for px < endPy we
use ch, i.e. the conductor has to change before the end of stepset Py, and for startPx < py
cp, i.e. the conductor is only permitted to change after the start of the stepset Px.

Note that None, Some will occur primarily while turning a system on, as some components
will not care about the value of conductors when they’re off, and the reverse when turning
the system off. In both cases, the target platform state still tells us the exact value the
conductor will, or should, have deduced from the assignment to the conductor in the final
state, which cannot be “None”.

If two consecutive states do not have any stepsets between them we can simply connect
them directly as s1,post < s2.

If at any point during this procedure the schedule graph should cease being a DAG, which
can happen for some target states or due to misconfiguration, then scheduling has to be
considered failed.

Compared to prior work, which emits static schedules with a fixed order, producing a
schedule DAG has the benefit of enabling, in theory, parallel execution of the schdule in
dynamic orders. This has the potential to speed up the execution times of the schedule if
there are components that take a long time to react. As Knüsel [3] notes, this is only really
true for the bring-up of clock generators on the Enzian, with most other regulators reacting
very quickly, and as we are unconcerned with the overall execution time of the schedule
at this tage anyway, we do not investigate the effects of this further, instead keeping the
schedule in DAG-form primariliy for flexibility.

Stepset Example To further illustrate the need for stepsets we give a practical example,
that is also useful as an example of how unpredictable and difficult to model hardware can
be.

We begin by quoting Schult:

70

[. . .] It is also not clear how forgiving the bootstrap process of the ThunderX is
to the main clock being enabled a bit later than VDD IO is powered. For this
reason, we might be tempted to decompose this step as follows:

1. Enable the main clock

2. Power VDD_IO

The design of the Enzian platform does not allow this, however: The main clock
generator is powered by the conductor connected to the VDD IO input of the
ThunderX. (Schult [2])

This also means that the clock generators can only be allowed to enter their “Powered”
state if we also transition the ThunderX into its “Reset” state, and so a valid platform state
where we only power the clock generators does not exist.

What can also be derived from the quote above, is that

Enable the main clock ≤ Power VDD_IO

but
Enable the main clock 6< Power VDD_IO

and so we arrive at
Enable the main clock = Power VDD_IO

In effect, this means that because the main clock is only enabled when VDD_IO is powered
that we must, in the strictest sense, violate the sequencing requirements of the ThunderX,
due to the way the Enzian is configured.

In practice, the clock generators seem to be able to start generating output quickly enough,
after being provided with power themselves, that the ThunderX can still consider the two
events to happen “at the same time”.

We can encode this the same way Knüsel [3] do, by having a step set

[Enable(V DD_IO33), Enable(PLL_REF_CLK)]

and implicitly allowing VDD_IO33 to happen after PLL_REF_CLK, if required.

Sequencing Failure Unfortunately, the schedule generation cannot escape the responsi-
bility of continuously checking if the DAG contains a cycle, or doing so at the end of the
process, because sequencing can fail for valid target combinations, as we intend show here.

There is no guarantee that all valid target combinations are also reachable through a
sequence.

See Figure 7.10 for an illustration of the following example.

Take consumer T with two states T1, T2 and two steps from T1 → T2: Ts1, Ts2, add two
regulators R1, R2 and two boolean conductors C1, C2.

R1 has an output connected to C1 and R2 to C2.

The two regulators have two states each, on, off . In the on state R1 assigns to C1 and R2

to C2 true, in off false.

The target platform state with C1, C2, T all being on is trivially a valid state.

71

We require that the two steps of the consumer T happen in-order:

Ts1 < Ts2

Step Ts1 needs C2 = true, Ts2 needs C1 = true

C2,h < Ts1

C1,h < Ts2

And lastly to step from off to on R2 requires that C1 = true.

C1,h < R2s

We now see the cycle:

R2s−end → R2−on → C2,h → Ts1−end → Ts2−begin → C1,h → R2s−end

and have shown a sequencing failure from a valid target platform state.

C1C2

R1_On

R1_Off

R1_s_begin

R1_s_end

R2_On

R2_s_begin

R2_s_end

R2_Off

T_s2_begin T_s2_endT_s1_begin T_s1_endT_Off T_On

Figure 7.10: Sequence of a platform with a valid target state in T_On but no sequence
leading to it. The cycle is marked in red.

Composite Sequences

Unfortunately the assumption that there exists a sequence such that every conductor only
changes once does not hold for all target states, a trivial example being when a regulator
has to change the value it outputs and has to be reconfigured. In this case we have to
composit multiple sequences into a larger one, with each individual sequence only changing
each conductor once.

72

We conjecture that, for the restrictions we impose on our platform, a conductor requiring
multiple changes always involves a regulator having to change its output.

Determining if compositing is required under these restrictions is thus very simple: we can
iterate over all regulators that are currently assigning to a changing conductor and check
if their new target assignment differs from their previous one and if that would require
reconfiguration. If yes, then we must composit.

Once all regulators that must change their output are collected we can compute for each of
them the state that we require them to return to in order to be reconfigurable.

As we already use an ILP solver for target platform state computation we can use a very
similar approach here: we find a target platform state with the same restrictions as usual,
except that for our targets we don’t require that their components are in those exact states
but instead in at most those states.

As parameters we use the reconfigurable states we described above, and generate an
intermediate target platform state.

Because this intermediate target platform state is necessarily “lesser” than our current
platform state we can sequence to it without requiring further composition. Once we have
reached the target platform state we generate a sequence to our original target platform
state.

Sequence Invalidation

While we are following a sequence it is possible that it becomes invalidated by some change
in the platform state.

An invalid sequence can be repaired, even if the target state changes, but we argue that
this is not worth the additional complexity, and so we invalidate sequences when these
conditions are met.

Sequence Repair Instead of invalidating a sequence and discarding it altogether it is
possible that sequence repair, a term borrowed from planning where plan repair is sometimes
used to recover information from plans that no longer fit the objective exactly, can be
achieved under our circumstances, and for complex instances even be worth it.

We provide a rough outline of a potential algorithm to repair sequences, to demonstrate
roughly what we conjecture should be possible, but cannot provide further insight into the
problem.

Algorithm 8: Sequence Repair
if target platform state changes then

Recompute target state;
for all components connected to changing conductor do

Recompute steps;
end

else
for all components that changed state do

Recompute steps;
end

end

73

SCRAM

A SCRAM is a known sequence to return the platform, not matter its current state, into a
known safe state “forcefully”. The most aggressive variant is to cut power at the root of the
tree, which on the Enzian is the PSU. A SCRAM could also be implemented as a simple
forced target platform state that we then let our normal sequencing infrastructure deal with.
This approach is problematic primarliy because this sequencing, especially in circumstances
where a SCRAM is an appropriate reaction, may not be able to find a sequence to the
SCRAM target. Ideally, a SCRAM sequence is pre-generated, iterating through the voltage
regulators and commanding them to cease outputting power immediately in a known, safe
order, ignoring all alerts and faults and continuing unabated until the platform has reached
the desired known, safe state.

For our purposes we favour a pre-generated sequence that

1. Set all fans to max speed

2. Turn the platform off iteratively

which is implemented in the current Enzian power manager as a “fan scram”.

7.6.3 Operation

The transition manager keeps state in the form of

• Optionally, a schedule

• The progress on that schedule, in the form of sequence steps that are “ready”, or
“completed”.

• Optionally, A target state cache

• Model requested (underspecified) target states

• User-requested (underspecified) target states

• Optionally, the current target state.

The transition manager has a relatively simple interface, taking as input:

• New target states

• Sequence invalidation commands

• Cache invalidation commands

And supports two interfaces: one for returning a step for the model to follow, another for
synchronizing the schedule state with the model.

Target states are kept in a stack, and new target states are added to the top of the
stack. The reason for using a stack is that components will want to enter temporary
“intermediate” states, but should not have the authority to override the underlying wishes
of other components.

When the transition manager is asked to return a step but has no sequence then one of the
target state stacks is popped and the result made the current target state. The transition
manager prefers the model-requested target states, because these are either in service of
another user target, or are ensuring the proper functioning of the platform, for example in
reaction to a fault.

74

Before generating a sequence, the transition manager checks if the target states have already
been reached. If all of the target states in the set have been reached, the target state is
dropped and the next one selected.

The following pseudo-code (algorithm 9) illustrates how the transition manager returns a
step for the model to follow.

Algorithm 9: Transition Manager: get_step()
if schedule = None then

if state_cache = None then
regenerate_target_state_cache();

end
if current_target = None then

if ¬ model_request_stack.is_empty() then
current_target ← model_request_stack.pop();

else if ¬ user_request_stack.is_empty() then
current_target ← user_request_stack.pop();

else
current_target ← None;

end
end
if current_target = None then

return None;
end
schedule ← generate_sequence_graph();
for step s ∈ schedule do

if schedule.sequence_graph_step_is_ready(s) then
mark_ready(s);
schedule.ready_steps.push(s);

end
end

end
return get_step_from_sequence_graph();

get_step_from_sequence_graph() must be a deterministic, idempotent function, mean-
ing it does not alter the state of the transition manager and always returns the same step,
given the same sequence graph.

The transition manager as envisioned does not include a timeout or cap on the number of
times a step is retried, though a basic version of either of these features would be trivial to
implement. More advanced solutions would run into the issue that a proper timeout or
maxium number of retries is both a matter of the sequence/schedule being followed and the
component-DES implementation. One option would be to simply accept this distributed
responsibility for retry limits, but we did not investigate this in sufficient depth to offer a
conclusive opinion on whether this solution is appropriate.

The model controller is responsible for asking the transition manager to synchronize itself
with the current model state. When it does, the transition manager follows these steps to
get up-to-date with the model state:

If the transition manager is currently following a schedule, it checks all steps that are

75

currently ready for execution. For each of these ready steps, the transition manager checks
with the platform model if the step post-conditions have been completed, for example if a
conducor’s value is in a certain range, a component in a certain state, or configured. All the
ready steps that have been completed are marked as “complete” instead of “ready”. This
process is repeated until the transition manager finds no more ready steps to complete.
Completed schedules are deleted. See algorithm 10 for pseudo-code implementation.

Algorithm 10: Transition Manager: synchronize(model)
if schedule 6= None then

completed_steps ← {};
do

completed_steps ← {};
for s ∈ schedule.ready_steps do

if model.check_post_condition(s) then
mark_completed(s);
completed_steps.push(s);
schedule.ready_steps.remove(s);

end
end
for s ∈completed_steps do

for n ∈ sequence_graph.children(s) do
if schedule.sequence_graph_step_is_ready(n) then

mark_ready(n);
schedule.ready_steps.push(n);

end
end

end
while ¬ completed_steps.is_empty();
if schedule.ready_steps.is_empty() then

transition_manager.delete_schedule();
end

end

Note that the transition manager cannot ensure that the steps have been executed in the
correct order, it can only release steps that it knows should be execute next.

7.7 State Transitions

Given our model of the platform we can now “induce” change on three levels:

1. State changes to a single PET-wrapped value

2. Sequences with at most one change per conductor

3. Composite Sequences, made up of Single-change sequences

We can realize the first type, changing the state of a single PET-wrapper value, “atomically”
in some sense, and build sequences out of these atomic changes such that we never leave
our model in an inconsistent state, barring faults or unpredictable behaviour.

To generate these more complex sequences we have to resolve the, potentially underspecified,

76

user-provided target states to a full platform target state (see subsection 7.6.1) and then
generate a sequence from the current state to the target platform state (see subsection 7.6.2)
in a secondary step.

7.7.1 PET State changes

We can induce state change by exploiting the behaviour of our model: we simply set the
target of the PET value we want to alter and ensure that NextRead = false.

77

Chapter 8

Evaluation

We evaluate the part of our solution we implemented, which is the target platform state
and sequence generation.

8.1 Scaling and Online-Feasibility of Sequencing and State
Generation

Because online, dynamic management is more time-sensitive than its offline counterpart,
we want to show that our target platform state and sequence generation can operate
withing stricter time-limits than prior work could, and ideally quickly enough for online
management.

Even given our general assumption that in-between faults the platform is well-behaved
a solution that can react to platform changes or user requests with a lower latency is
desirable both from a user-experience standpoint, as well as for the marginal improvements
in platform safety that reacting in 0.5 instead of 5 seconds can provide in some circumstances
where a future fault is avoided.

8.1.1 Setup

We provide a comparison to the optimizing off-line implementation from Knüsel [3], which
heavily influenced our own way of modelling the platform, and consider it our baseline. Even
though [3] use an optimizing solver to find “optimal” platform states our own implementation,
while less flexible, implements similar optimizations. For example, we also require that
states are “minimal” and compute arguably optimal conductor limits.

Due to time limitations, it was unfortunately not possible to also compare against Schult
[2]’s approach.

We appropriate a test case from Knüsel [3] for comparison, where they generate platforms
with n duplicated ThunderX-CPUs, like the CPU used on an Enzian, and their power
network, like on an Enzian plus some shared infrastructure. We force this platform to be
all-off and then ask it to turn on (the CPUs are “On”) and the reverse; turning it off (the
CPUs are “Off”) again.

It is important to note that our implementation is written in Rust and partially primed for
speed, while [3] use Guile-Scheme, admittedly interact with the Z3 SMT solver inefficiently,

78

and did not write their implementation with online-management in mind. Nevertheless, we
do not believe that improvements on these details could provide the order-of-magnitude
speedups we will be able to demonstrate.

In addition to the restrictions inherent in our solution, the implementation assumes in
addition:

• all conductors change, i.e. we have an easy way of telling which conductors do change
when going from the present state to the target state.

• the platform is trivially observable, i.e. a conductor carrying voltage implies that we
can monitor it. Our baseline does ensure this,

Knüsel [3]’s implementation includes some advanced functionality that we do not support,
branching state transitions, for example.

For output, [3]’s implementation generates a file with ordered configure, set-to and monitor
commands, while ours outputs a more abstract sequence graph and accompanying target
conductor ranges, from which the same information can be extracted. We argue that the
effort to translate our output to a format similar to the one from [3].

We run this evaluation on a Dell workstation with a 4-core x86 Intel Xeon E3-1225 and
32GB of DDR4 RAM for scaling and baseline comparisons with [3] and additionally on
an actual Enzian BMC, a 2-core Zynq 7000 ARM processor with 1GB of DRAM to show
actual production feasibility.

Aside from the default “Full-Cache” variant of our implementation, which precomputes
the entire target state cache, we add a second variant “On-Demand-Cache”, which still
computes target platform states for individual targets and adds them to the cache before
fusing them, and finally a “No-Cache” variant, which does not use the cache at all, and
solves the target platform state problem for all targets at once.

For our solution and the Precision Desktop, for every variant we run 5 iterations per
platform size, from 1 CPU up to 100 CPUs or when a single iteration takes longer than
120 seconds to compute, whichever comes first. We generated “Full-Cache” up to 15 CPUs,
“On-Demand-Cache” up to 73 CPUs, and “No-Cache” up to 100 CPUs. For our solution and
the Schibenstoll, for every variant we run 5 iterations per platform size, from 1 CPU up to
25 CPUs or when a single iteration takes longer than 120 seconds to compute, whichever
comes first. We generated “Full-Cache” up to 8 CPUs, “On-Demand-Cache” up to 25 CPUs,
and “No-Cache” up to 25 CPUs.

We generate for most of the baseline (“all-on” state, “on” and ”off” sequences) results up to
32 CPUs, and compute the “initial” state for up to 100 CPUs.

8.1.2 Results & Interpretation

To explain our findings we will take a tour through the stages of generating a sequence that
takes us to an underspecified target platform state. We begin with the precomputation
step, continue into the step where we actually generate the target platform state and finish
with sequence generation. Along the way we also compare combinations of these steps to
our baseline.

See Figure 8.1 for a comparison between “turn-on” and “turn-off” times, showing that
“turn-off” is relatively more difficult for our solution, but less so for the baseline. For our
implementation, we cannot make out a consistent difference in difficulty between generating

79

an “Off” vs an “On” target platform state, as per Figure 8.2. We fill focus on the “turn-on”
state generation/sequencing performance of our solution, which appears to be more difficult
overall to sequence for our solution than “turn-off’.

0 10 20 30 40 50 60 70 80 90 100 110

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

[Number of CPUs]

O
n

O
ff
ti
m
e
fr
ac
ti
on

Full-Pre-Cache
On-Demand-Cache

No-Cache
Baseline

Figure 8.1: On
Off sequencing time ratio. Dashed lines show data from Schibenstoll01, the

undashed lines are from the Precision desktop, expect for the pink line, which shows baseline
data. The ratio between sequencing “On” and “Off” seems to increase, but then settle at
about 1.15, consistently for sequencing on the Schibenstoll01, as well as on the Precision
desktop. Interestingly, for our baseline this reverses, and sequencing “Off” takes much
longer, up to an observed 3 times, than sequencing “On”. We can conclude that there
is no inherent difference in the “Difficulty” of sequencing On or Off sequences, and that
instead different implementations can find one or the other much easier to solve for. We
also interpret our data to mean that this difficulty ratio converges to a constant, at least
for our solution, for sufficiently large problem sizes and that a runaway effect is unlikely.

The first stage in our solution is “Precomputation”, where the MIS-problem object is
initialized with shared constraints (single-state components, incompatible state combina-
tions) and the Full-Cache variant additionally caches the platform state for every feasible
component-state combination.

As expected, the Full-Cache precomputation takes orders of magnitude longer than the
other two variants, which take roughly the same amount of time, see Figure 8.3a.

However, when we look at time taken for generating the completed results — which for
Full-Cache just means state fusion, for the On-Demand-Cache state generation and fusion,
and for the No-Cache variant simply generating the target state — Full-Cache outperforms
the other variants by factors of roughly 2-10 and for smaller platform sizes between 1-10
CPUs, see Figure 8.3b and Figure 8.3c. Predictably, for platforms with only a single CPU
the Full-Cache variant does not have to do any fusion at all, and simply returns the platform
target state from the cache.

For 10 CPUs, Full-Cache takes roughly 30 seconds, which we feel would still be acceptable

80

0 10 20 30 40 50 60 70 80 90 100 110
0.7

0.8

0.9

1

1.1

1.2

[Number of CPUs]

O
n

O
ff
ti
m
e
fr
ac
ti
on

Full-Cache
On-Demand-Cache

No-Cache

Figure 8.2: On
Off state generation time ratio. Dashed lines show data from Schibenstoll01,

the undashed lines are from the Precision desktop dataset. We observe that there is almost
no consistent difference between generating an “On” vs an “Off” state, barring values we
can confidently consider noisy.

as a one-off cost for a stable platform that requires very low latencies. Ideally, it seems, the
cache is initially generated on-demand, but also continuously generated in the background
while the system is idling.

Combining the precomputation and finding platform target steps we end up with Figure 8.4.
This is sufficiently close to the target generation steps for our baseline, which has to generate
both an initial and all-on/all-off state. Because the baseline requires both these states to
generate a sequence, while ours would rely on information otherwise collected to calculate
the current platform state, we combine their times for a single “combined baseline state
generation” metric.

Because the “all-on” target makes up the bulk of this combined value, compare Figure 8.5,
we also show the “initial” target generation. “Initial” is a state where all components are
“Off” and is especially easy for the SMT solver to solve for, because the target state overlaps
with the target metric: wanting the components to be as “Off” as possible. We include it
as a best-case example for the baseline state generation.

Even so, only for large platforms with 6 or more CPUs does the baseline outperform the Full-
Cache variant, which has already done most of the work for all possible target states. The
other two variants outperform the baseline by 1-2 orders of magnitude throughout, thanks
to our additional restrictions/assumptions and avoidance of complex SMT-/OMT-solvers.

If no caching at all is wanted, or the platform size grows very large, then explicitly solving
the target platform state for all targets at once, No-Cache, becomes the best solution,
outperforming all others on single-shot performance. If we know that we frequently target
the same platform states then On-Demand-Cache has the potential to outperform No-Cache

81

0 25 50 75 100

100

101

102

103

104

105

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Full-Cache
On-Demand-Cache

No-Cache

(a) Logarithmic y axis, Target State Cache Pre-
computation times for Turn-on sequence.

0 25 50 75 100

100

101

102

103

104

105

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Full-Cache
On-Demand-Cache

No-Cache

(b) Logarithmic y axis, Target Platform State
Calculation times for Turn-on sequence.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100

101

102

103

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Full-Cache
On-Demand-Cache

No-Cache

(c) Logarithmic y axis, Target Platform State Calculation times for Turn-on sequence.
Zoomed-in to show Full-Cache outperforming other variants.

Figure 8.3: Cache Precomputation and Target Platform State Calculation times

for larger platforms.

Continuing with the next stage: Sequence generation, Figure 8.6a, and Figure 8.6b. Our
implementations consistently outperform the baseline by several orders of magnitude and
exhibit much better growth behaviour as the platform size increases.

There is also no variance between the same targets of our variants. Sequencing the platform
to “turn-on” takes about the same amount of time as it does to sequence “turn-off”. While
sequence generation times could vary between approaches that somehow limit the number
of conductors that have to change, in our evaluation the same conductors have to change
no matter which target platform state or sequence is chosen, so the exact target state
generated has little influence on sequencing, in addition to the fact that there is very little,
if any, difference in the target platform states generated by our variants.

But qualitatively, these results are encouraging with regards to online-power management

82

0 10 20 30 40 50 60 70 80 90 100 110

101

102

103

104

105

106

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Full-Cache
On-Demand-Cache

No-Cache
Baseline “initial”
Baseline combined

Figure 8.4: Logarithmic y axis, Non-baseline are showing Target Platform State Calculation
+ Target State Cache Precomputation for Turn-on sequence. Baseline is showing times for
the two states necessary for both Turn-on and Turn-off sequences, as well as a combined
value adding the two.

0 10 20 30 40 50 60 70 80 90 100 110

103

104

105

106

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Baseline “initial”
Baseline “all-on”
Baseline combined

Figure 8.5: Logarithmic y axis, Baseline state computation for “init”, “all-on” states and a
combined measure for both added up. Compare Figure 8.4.

being feasible.

To confirm that our results on the Precision Desktop carry over to the BMC, we compare
Target Platform State Calculation + Target State Cache Precomputation and Sequence
Generation times for all three variants in Figure 8.7a, Figure 8.7b, Figure 8.7c, Figure 8.8a,
Figure 8.8b and Figure 8.8c.

As expected, the Desktop significantly outperforms the BMC, but more importantly for
both Target State and Sequence generation the BMC shows scaling behaviour matching
roughly the one on the Desktop.

We are of course also interested in the absolute numbers for finding a target platform state
and sequence on the BMC, and when we do we find that while for smaller platform sizes

83

0 25 50 75 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4
·104

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Full-Cache
On-Demand-Cache

No-Cache
Baseline

(a) Sequence Generation times for Turn-on se-
quence

0 25 50 75 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4
·104

[Number of CPUs]

[M
ill
is
ec
on

ds
]

(b) Sequence Generation times for Turn-off se-
quence, see Figure 8.6a to the left for the Legend

Figure 8.6: Comparison showing Sequence Generation times for the Turn-on and Turn-off
sequences respectively. Our implementations results very closely track each other, and that
the baseline takes significantly longer to generate a sequence.

Full-Cache is feasible, for more than 3− 4 CPUs pre-generating the entire cache becomes
far too expensive, and the near-zero precomputation efforts by the On-Demand-Cache
and No-Cache variants become very appealing. However, Full-Cache, given a cache, still
generates an actual target platform state faster than either of the other variants, saving
10s of milliseconds against No-Cache for small platforms.

If very low latency target platform state generation were desired for larger platforms, then
as discussed previously, Full-Cache would have to become significantly smarter and not just
pre-compute the entire cache. Perhaps critical target platform states could be generated
first, or similar heuristics developed, but we leave this exploration to future work.

8.1.3 Summary

We were able to show that out target platform state and sequencing solutions outperform
prior work from [3] by orders of magnitude, that they are suitable for online power
management usage and able to scale to larger platform sizes.

We verified this through running experiments both on a normal PC as well as an actual
Enzian BMC, where for 2 virtual CPUs with about 4 seconds of pre-computation we can
generate target platform states in about 46ms and sequences in about 6ms, for a total
precomputed latency of roughly 52ms. If we generate the target platform states on-demand
we can generate a target state in about 112ms, for a total worst-case latency of 118ms,
which we find to be fast enough for interactive usage.

84

0 10

102

104

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Desktop Full-Cache
BMC Full-Cache

(a) Logarithmic y axis, Target Platform State Calculation + Target State Cache Precom-
putation for Full-Cache Turn-on sequences.

0 10 20 30 40 50 60 70 80

101

103

105

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Desktop On-Demand-Cache
BMC On-Demand-Cache

(b) Logarithmic y axis, Target Platform State Calculation + Target State Cache Precom-
putation for On-Demand-Cache Turn-on sequences.

0 10 20 30 40 50 60 70 80 90 100 110

102

104

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Desktop No-Cache
BMC No-Cache

(c) Logarithmic y axis, Target Platform State Calculation + Target State Cache Precom-
putation for No-Cache Turn-on sequences.

Figure 8.7: Comparison of Target Platform State Calculation + Target State Cache
Precomputation times on the Zynq BMC and the Precision Dekstop

8.2 Simple Correctness of Sequencing and State Generation

Because our implementation is unfortunately not complete enough to allow a functional
evaluation by actually executing a sequence on an Enzian, we can nonetheless attempt to
show that our solution and implementation works based on a comparison to a solution that
is known to generate working sequences.

We argue that if a sequence graph generated by our implementation accepts the sequence
generated by the implemetation in Knüsel [3] as a valid linear extension then that is at
least an indication that our sequence graph is correct.

85

0 10

100

101

102

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Desktop Full-Cache
BMC Full-Cache

(a) Logarithmic y axis, Sequence Generation for Full-Cache Turn-on sequences.

0 10 20 30 40 50 60 70 80

100

102

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Desktop On-Demand-Cache
BMC On-Demand-Cache

(b) Logarithmic y axis, Sequence Generation for On-Demand-Cache Turn-on sequences.

0 10 20 30 40 50 60 70 80 90 100 110

100

102

[Number of CPUs]

[M
ill
is
ec
on

ds
]

Desktop No-Cache
BMC No-Cache

(c) Logarithmic y axis, Sequence Generation for No-Cache Turn-on sequences.

Figure 8.8: Comparison of Sequence Generation times on the Zynq BMC and the Precision
Dekstop

8.2.1 Setup

We generate a sequence with the basline from [3], and let our implementation generate
a schedule graph. We use the same platform specification generation procedure as in
Section 8.1 and generate a platform spec with a single ThunderX-CPU.

Then, we sanitize the sequence generated by the basline, removing unnecessary details like
ports or value ranges.

Note that the baseline schedule outputs commands, for example setting the warning levels
for the ISPPAC component monitors, that our implementation would do on-the-fly and not
explicitly encode in the sequence. The baseline also “configures” components that do not
have an explicit “Configured” state. We consider the “Configured” and “Powered” states
equivalent for those components, or “On” if they have no “Powered” state.

86

0 1 2 3 4

0

5

10

15

20

25

30

[Number of CPUs]

[S
ec
on

ds
]

Full-Cache
On-Demand-Cache

No-Cache

(a) Logarithmic y axis, Target State Cache
Precomputation for Turn-on sequences on
the BMC.

0 1 2 3 4

0.5

1

1.5

2

·10−2

[Number of CPUs]

[S
ec
on

ds
]

Full-Cache
On-Demand-Cache

No-Cache

(b) Logarithmic y axis, Sequence Generation
for Turn-on sequences on the BMC.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

[Number of CPUs]

[S
ec
on

ds
]

Full-Cache
On-Demand-Cache

No-Cache

(c) Logarithmic y axis, Target Platform State Calculation for Turn-on sequences on the
BMC.

Figure 8.9: Comparisons of Total Target Platform State Calculation and Sequence Genera-
tion on the BMC for all variants, zoomed in to small platform sizes. We see that for effort
for the target state cache increases very quickly on the BMC, but also that calculating the
actual target platform state is always faster than all other variants. For larger platforms, full
state precomputation is obviously not feasible on the BMC, but a smarter approach where
the cache is partially generated on-demand and in the background, or adding heuristics for
which target states to generate target platform statest first, could preserve the advantages
of having a cache, while thinning the pain of having to compute it.

87

sequence: (
(1
set-to
wire.b-psup-on)

(1
configure
pac-cpu-0

(1.5
monitor
wire.psup-pgood

(1.5
monitor
wire.3v3-psup

(1.5
monitor
wire.5v-psup

(1.5
monitor
wire.12v-cpu0-psup

(2 configure ina226-ddr-cpu-13-0)
(2 configure si5395-clk-main)
[...]

)

Listing 1: Illustrative subset of the “sanitized” baseline output.

We then translate it using the following equivalence:

• (i set-to wire.X) and X_permitted.

• (i configure X) and X:->Configured.

• (i monitor X) and X_happened.

• (n wait (x ms)) and component_wait.

We use the names from the baseline sequence and the step names as found in the debug
sequence graph output (which outputs the internal names of the sequence steps).

Finally, we go through the baseline sequence steps one after the other and ensure after
every step that the sequence graph our implementation generated considers the step valid,
given the steps alreay taken.

For every baseline sequence step we check that no earlier sequence step is a parent in the
sequence graph.

See Figure A.1, Listing 3, and Listing 4 in the appendix for the full sequence graph and
baseline outputs that were used.

8.2.2 Result

We find that the sequence graph our implementation generates accepts the sequence with
the baseline from [3] as valid, with the following deviations:

88

b-psup-on_permitted

pac-cpu-0:->Configured

psup-pgood_happened
3v3-psup_happened
5v-psup_happened
12v-cpu0-psup_happened

ina226-ddr-cpu-13-0:->Configured

[...]

cpu_1_wait

[...]

Listing 2: Illustrative subset of the translated sanitized baseline output.

1. The baseline sequence checks if the clk-main conductor has changed later than our
solution would, after telling the regulator si5395-clk-cpu-0 to configure itself. This is
due to a minor difference in the platform specifications used, where the baseline forces
the SI5395 CLK_IN input to 0 while powered, while we allow it to float between
0 and 50 millihertz. We do not consider this a deviation that indicates that our
implementation generates sequences incorrectly.

8.2.3 Interpretation

We interpret this result as positive indication that our platform target state and sequence
generation mechanisms output correct sequences, but acknowledge that actually executing
the sequence on an Enzian BMC and observing the platform taking the desired state
correctly remains outstanding.

8.3 Summary

We verified our target platform state and sequence generation runtimes by comparing them
against a baseline form [3], and also executing them on an actual Enzian Zynq BMC. We
also provide strong indication that our target platform state and sequence generation works
correctly by verifying the baseline, which is known to generate correct sequences, against a
sequence graph we generated.

We have succesfully shown that out target platform state generation and sequencing
implementation is able to generate sequences quickly enough for online, dyamic usage, and
that it likely does so correctly.

89

Chapter 9

Conclusion

We conclude the thesis with a list of improvements we think can be made on this work, as
well as avenues for future work only partially related to the solution presented in this thesis
that we encountered, and a concluding statement.

9.1 Future Work

“Prima facie evidence suggests that
there could be a case for further
investigation, to establish whether or
not enquiries should be put in hand.
[. . .] Nevertheless, it should be stressed
that available information is limited
and relevant facts could be difficult to
establish with any degree of certainty.”

Sir Nigel Hawthorne as Sir Humphrey
Appleby – Yes, Minister

There are quite a few improvements that we could make that have built up along the way.
The following is a selection of future improvements and directions for research, organized
roughly by “area”.

General improvements:

• Configuration management: The way the configuration management is currently
solved and the way it interacts with the rest of the system feels “clunky”. This
subsystem needs improvement, possibly by allowing/requiring the component-DES to
keep additional state internally.

• FPGA offloading of target platform state and/or sequence generation as CSP: The
Enzian BMC is an SOC with both a CPU and an FPGA. Instead of arduously
generating the target platform state and sequences on the CPU, it may be possible
to offload a CSP instance or similar encoding of either problem to the FPGA.

• Error margins: A regression over Knüsel [3] are error margins for ports, assignments
and measurements. Because this increases the complexity for otherwise very simple
operations (“can this assignment fulfill this measurement”, “does this output value fit
this state”) this was left out, but should definitely find its way back into the solution.

90

• Remove restrictions: A catch-all improvement. Removing restrictions we place on the
platform could allow for more platforms to be modelled by our solution.

• Explicit support for more faults: Currently the platform is primarily concerned
with voltages and clock-frequencies. More explicit support for the other kinds of
faults, relating to current, temperature etc., is needed as they are almost, but not
quite the same as voltages. There are also completely faults like the fans ceasing
operation suddenly that we do not explicitly support everywhere. Fundamentally, the
component-DES can deal with these with minor changes, but the rest of the platform
needs to be changed slightly to accomodate these new fault types.

Sequencing/State generation:

• Compilation of full Schult/Knuselian problem with online guarantees: While dismissed
during this thesis, it may still be possible to “compile” the more general Schult or
Knüsel models and ensure low latencies that way.

• Other multi-transition sequencing approaches: We feel like our multi-transition
sequencing should work, but also feels inelegant. Knowing full well of the increase
in complexity, an integrated multi-transition sequencing solution that inherently
understands transitory states would make for a very interesting solution.

• Sequence Repair: Discussed only very briefly, if we could repair our sequences instead
of having to throw them away at the slightest change in model state, we could save a
lot of expensive re-computation effort.

• Target state cache repair: Pre-computing the target cache is the single most expensive
action our solution has to take. Instead of throwing the whole cache away when
a component-DES requests it, it may be possible to retain a lot of the state that
went into generating it and re-generate based on that instead of starting again from
scratch.

• Target State Computation: Using a maximum independent set as the basis for our
target state computation is theoretically elegant, but we have a suspicion that there
may be a much simpler solution akin to our sequencing that generates a target
platform state iteratively and faster.

• Smarter State Cache: Though dependent on the individual requirements of the user
and hardware, implementing different state cache computation methods and allowing
the user to choose from among them, maybe even specify them somehow, would
allow for better adaptability to different hardware environments and make it easier
to evaluate them in-depth.

Controller:

• Allow multiple outstanding actions: We currently limit the number of actions that
our model has initiated at any point in time to one, but schedules could be executed
on the platform a lot faster if multiple Read/Write/Configures could be outstanding
at any time. Maybe having either multiple reads or a single “change” action at any
point in time is fine under certain circumstances, as long as the reads are unable to
override each other.

• Let component-DES request high-priority actions: This would help with fault reaction
latency. If a component-DES requests a new target state, to mitigate a fault, then
there is currently no way for that request to be prioritized, wasting time. However,

91

it is unclear which other normal -priority actions are also implicitly high-priority,
because the component-DES action may depend on them.

• Component-DES or Transition Manager timeout: The component-DES or transi-
tion manager cannot currently time out, meaning that WaitForVoltage or similar
behaviours are not possible. The possible solutions we considered all either involved
taking control away from the component-DES, which we consider an impure solution
because the control logic for a component should be concentrated in its DES, or
extending the DES either with some internal clock, or a model-clock that informs the
DES when a request has timed out.

• Partial-consistency Model: A Partial-consistency model is a model that does not
require every component on the platform to be fully satisfied with its state. This
would allows for immediate execution of actions that don’t need full-model visibility,
like the components in the two separete power trees for the CPU and FPGA on an
Enzian, but would be complicated to implement, as it would require a rework of large
parts of the model.

9.2 Summary

In this thesis, we have invetigated declarative dynamic power management. In pursuit of
this goal, we first investigated three general approaches to the problem at hand, before
deciding that none of them were sufficient for our online, dynamic target use case and
creating our own solution, inspired by the restrictions introduced by Knüsel [3].

We came to the conclusion that appropriately dealing with the vast heterogeneity of
component behaviours that we want to manage requires a solution that allows components
to “manage themselves”, treating them as a black-box discrete event system that outputs
abstract state information that we can then use to generate target platform states and
sequences.

We introduce a new way of generating target platform states by viewing it as a MIS-based
optimization problem. Similarly, we provide a novel way of genrating a complete sequence
between two fully specified target platform states by building a DAG from state assignments
and inter-state transitions. Our solution also introduces a way to generate composite
sequences with multiple changes per conductor by generating a least-intermediate target
state that we have high confidence can be sequenced to.

We evaluate our target platform state and sequence generation mechanisms’ performance
against a baseline [3], and on an actual Enzian BMC. We also demonstrate that we can
generate sequence graphs that closely match Knüsel [3] sequences.

The complete design, while unimplemented, fulfills the requirements for dynamically man-
aging an Enzian, bringing it into stable target states, and reacting to unexpected faults
safely.

92

Bibliography

[1] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He, N. Hossle, D.
Korolija, M. Licciardello, K. Martsenko, R. Achermann, G. Alonso, and T. Roscoe,
“Enzian: An open, general, cpu/fpga platform for systems software research,” ACM,
Feb. 2022, pp. 434–451, isbn: 9781450392051. doi: 10.1145/3503222.3507742.
[Online]. Available: https://dl.acm.org/doi/10.1145/3503222.3507742.

[2] J. Schult, “A model-based approach to platform-level power and clock management,”
2020. doi: 10.3929/ETHZ-B-000490632. [Online]. Available: https://doi.org/10.
3929/ethz-b-000490632.

[3] M. Knüsel, “Optimizing declarative power sequencing,” 2021. doi: 10.3929/ETHZ-B-
000533011. [Online]. Available: https://doi.org/10.3929/ethz-b-000533011.

[4] C. Allardice, E. R. Trapnell, E. Fermi, L. Fermi, and R. C. Williams, “The first
reactor [40th anniversary commemorative edition],” Office of Scientific and Technical
Information, Dec. 1982. doi: 10.2172/782931. [Online]. Available: http://www.osti.
gov/servlets/purl/782931-KfJR9N/webviewable/.

[5] “Virtual media vulnerability in bmc opens servers to remote attack,” [Online]. Avail-
able: https://github.com/eclypsium/USBAnywhere.

[6] C. Heimhofer, “Towards high-assurance board management controller software,” 2021.
doi: 10.3929/ETHZ-B-000490635. [Online]. Available: https://doi.org/10.3929/
ethz-b-000490635.

[7] L. Benini and G. D. Micheli, Dynamic Power Management. Springer US, 1998. doi:
10.1007/978-1-4615-5455-4.

[8] I2c-bus specification and user manual, Oct. 2021. [Online]. Available: https://www.
nxp.com/docs/en/user-guide/UM10204.pdf.

[9] L. Humbel, D. Schwyn, N. Hossle, R. Haecki, M. Licciardello, J. Schaer, D. Cock,
M. Giardino, and T. Roscoe, A model-checked i2c specification, Aug. 2021. doi:
10.1007/978-3-030-84629-9_10. [Online]. Available: https://link.springer.
com/10.1007/978-3-030-84629-9_10.

[10] System management bus (smbus) specification, Mar. 2018. [Online]. Available: http:
//smbus.org/specs/SMBus_3_1_20180319.pdf.

[11] Pmbus™ power system management protocol specification. [Online]. Available: https:
//pmbus.org/current-specifications/.

[12] J. Schult, D. Schwyn, M. Giardino, D. Cock, R. Achermann, and T. Roscoe, “Declara-
tive power sequencing,” ACM Transactions on Embedded Computing Systems, vol. 20,
pp. 1–21, 5s Oct. 2021, issn: 1539-9087. doi: 10.1145/3477039. [Online]. Available:
https://dl.acm.org/doi/10.1145/3477039.

[13] R. Weigel and B. Faltings, “Compiling constraint satisfaction problems,” Artificial
Intelligence, vol. 115, pp. 257–287, 2 Dec. 1999, issn: 00043702. doi: 10.1016/

93

https://doi.org/10.1145/3503222.3507742
https://dl.acm.org/doi/10.1145/3503222.3507742
https://doi.org/10.3929/ETHZ-B-000490632
https://doi.org/10.3929/ethz-b-000490632
https://doi.org/10.3929/ethz-b-000490632
https://doi.org/10.3929/ETHZ-B-000533011
https://doi.org/10.3929/ETHZ-B-000533011
https://doi.org/10.3929/ethz-b-000533011
https://doi.org/10.2172/782931
http://www.osti.gov/servlets/purl/782931-KfJR9N/webviewable/
http://www.osti.gov/servlets/purl/782931-KfJR9N/webviewable/
https://github.com/eclypsium/USBAnywhere
https://doi.org/10.3929/ETHZ-B-000490635
https://doi.org/10.3929/ethz-b-000490635
https://doi.org/10.3929/ethz-b-000490635
https://doi.org/10.1007/978-1-4615-5455-4
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://doi.org/10.1007/978-3-030-84629-9_10
https://link.springer.com/10.1007/978-3-030-84629-9_10
https://link.springer.com/10.1007/978-3-030-84629-9_10
http://smbus.org/specs/SMBus_3_1_20180319.pdf
http://smbus.org/specs/SMBus_3_1_20180319.pdf
https://pmbus.org/current-specifications/
https://pmbus.org/current-specifications/
https://doi.org/10.1145/3477039
https://dl.acm.org/doi/10.1145/3477039
https://doi.org/10.1016/S0004-3702(99)00077-6
https://doi.org/10.1016/S0004-3702(99)00077-6
https://doi.org/10.1016/S0004-3702(99)00077-6

S0004-3702(99)00077-6. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0004370299000776.

[14] H. Fargier, F. Maris, and V. Roger, “Temporal constraint satisfaction problems and
difference decision diagrams: A compilation map,” vol. 2016-January, IEEE, Nov.
2015, pp. 429–436, isbn: 978-1-5090-0163-7. doi: 10.1109/ICTAI.2015.71. [Online].
Available: http://ieeexplore.ieee.org/document/7372167/.

[15] M. Balunović, P. Bielik, and M. Vechev, “Learning to solve smt formulas,” S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31, Curran Associates, Inc., 2018. [Online]. Available: https://proceedings.
neurips.cc/paper/2018/file/68331ff0427b551b68e911eebe35233b-Paper.pdf.

[16] H. Turner, Polynomial-length planning spans the polynomial hierarchy, 2002. doi:
10.1007/3-540-45757-7_10. [Online]. Available: http://link.springer.com/10.
1007/3-540-45757-7_10.

[17] B. Bonet, R. Fuentetaja, Y. E-Martín, and D. Borrajo, “Guarantees for sound
abstractions for generalized planning,” AAAI Press, 2019, pp. 1566–1573, isbn:
9780999241141. [Online]. Available: https://dl.acm.org/doi/abs/10.5555/
3367243.3367256.

[18] S. Jiménez, J. Segovia-Aguas, and A. Jonsson, “A review of generalized planning,”
The Knowledge Engineering Review, vol. 34, e5, Mar. 2019, issn: 0269-8889. doi:
10.1017/S0269888918000231. [Online]. Available: https://www.cambridge.org/
core/product/identifier/S0269888918000231/type/journal_article.

[19] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, C. G.
Cassandras and S. Lafortune, Eds. Springer US, 2008, pp. 1–771, isbn: 978-0-387-
33332-8. doi: 10.1007/978-0-387-68612-7. [Online]. Available: http://link.
springer.com/10.1007/978-0-387-68612-7.

[20] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis,
“Diagnosability of discrete-event systems,” IEEE Transactions on Automatic Control,
vol. 40, pp. 1555–1575, 9 1995, issn: 00189286. doi: 10.1109/9.412626. [Online].
Available: http://ieeexplore.ieee.org/document/412626/.

[21] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the
IEEE, vol. 77, pp. 541–580, 4 Apr. 1989, issn: 00189219. doi: 10.1109/5.24143.
[Online]. Available: http://ieeexplore.ieee.org/document/24143/.

[22] G. Stremersch, Supervision of Petri Nets. Springer US, 2001, isbn: 978-1-4613-5603-5.
doi: 10.1007/978-1-4615-1537-1. [Online]. Available: http://link.springer.
com/10.1007/978-1-4615-1537-1.

[23] C. A. Petri, “Kommunikation mit automaten,” Technische Hochschule Darmstadt,
Jun. 1962. [Online]. Available: https://edoc.sub.uni-hamburg.de/informatik/
volltexte/2011/160/.

[24] V. Valberg and R. Davidrajuh, “Estimating salmon price rise due to the increased
presence of lice caused by global warming: A petri net based approach,” International
journal of simulation: systems, science & technology, Apr. 2021, issn: 1473-804X.
doi: 10.5013/IJSSST.a.22.01.05. [Online]. Available: https://edas.info/doi/
10.5013/IJSSST.a.22.01.05.

[25] M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event Control of Manu-
facturing Systems. Springer US, 1993, isbn: 978-1-4613-6368-2. doi: 10.1007/978-
1-4615-3126-5. [Online]. Available: http://link.springer.com/10.1007/978-1-
4615-3126-5.

[26] F. G. Commoner, Deadlocks in Petri-nets, CA / Massachusetts Computer Asso-
ciates, Inc. Massachusetts Computer Assoc., Inc.; 1972, vol. 7206-2311, Frederic G.

94

https://doi.org/10.1016/S0004-3702(99)00077-6
https://doi.org/10.1016/S0004-3702(99)00077-6
https://doi.org/10.1016/S0004-3702(99)00077-6
https://linkinghub.elsevier.com/retrieve/pii/S0004370299000776
https://linkinghub.elsevier.com/retrieve/pii/S0004370299000776
https://doi.org/10.1109/ICTAI.2015.71
http://ieeexplore.ieee.org/document/7372167/
https://proceedings.neurips.cc/paper/2018/file/68331ff0427b551b68e911eebe35233b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/68331ff0427b551b68e911eebe35233b-Paper.pdf
https://doi.org/10.1007/3-540-45757-7_10
http://link.springer.com/10.1007/3-540-45757-7_10
http://link.springer.com/10.1007/3-540-45757-7_10
https://dl.acm.org/doi/abs/10.5555/3367243.3367256
https://dl.acm.org/doi/abs/10.5555/3367243.3367256
https://doi.org/10.1017/S0269888918000231
https://www.cambridge.org/core/product/identifier/S0269888918000231/type/journal_article
https://www.cambridge.org/core/product/identifier/S0269888918000231/type/journal_article
https://doi.org/10.1007/978-0-387-68612-7
http://link.springer.com/10.1007/978-0-387-68612-7
http://link.springer.com/10.1007/978-0-387-68612-7
https://doi.org/10.1109/9.412626
http://ieeexplore.ieee.org/document/412626/
https://doi.org/10.1109/5.24143
http://ieeexplore.ieee.org/document/24143/
https://doi.org/10.1007/978-1-4615-1537-1
http://link.springer.com/10.1007/978-1-4615-1537-1
http://link.springer.com/10.1007/978-1-4615-1537-1
https://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://doi.org/10.5013/IJSSST.a.22.01.05
https://edas.info/doi/10.5013/IJSSST.a.22.01.05
https://edas.info/doi/10.5013/IJSSST.a.22.01.05
https://doi.org/10.1007/978-1-4615-3126-5
https://doi.org/10.1007/978-1-4615-3126-5
http://link.springer.com/10.1007/978-1-4615-3126-5
http://link.springer.com/10.1007/978-1-4615-3126-5

Commoner: Deadlocks in Petri Nets. Applied Data Research Inc., Wake-
152
field, Massachusetts 01880. Report Nr. CA-7206-2311 (1972). [Online]. Available:
https://www.tib.eu/de/suchen/id/TIBKAT%3A492829667.

[27] K. Lautenbach, Liveness in Petri Nets, Interner Bericht / Gesellschaft für Mathematik
und Datenverarbeitung mbH Bonn, Institut für Informationssystemforschung ISF.
Selbstverl. GMD; 1975, vol. 75,2. [Online]. Available: https://www.tib.eu/de/
suchen/id/TIBKAT%3A017519519.

[28] T. Agerwala and M. Flynn, “Comments on capabilities, limitations and “correctness”
of petri nets,” ACM SIGARCH Computer Architecture News, vol. 2, pp. 81–86,
4 Dec. 1973, issn: 0163-5964. doi: 10.1145/633642.803973. [Online]. Available:
https://dl.acm.org/doi/10.1145/633642.803973.

[29] T. Agerwala, “Complete model for representing the coordination of asynchronous
processes,” Technical Information Center, Jul. 1974. doi: 10.2172/4242290. [Online].
Available: http://www.osti.gov/servlets/purl/4242290/.

[30] M. Hack, “Petri net languages,” MIT Computation Structures Group Memo, 124 Jul.
1975.

[31] E. Badouel, L. Bernardinello, and P. Darondeau, Petri Net Synthesis. Springer Berlin
Heidelberg, 2015, isbn: 978-3-662-47966-7. doi: 10.1007/978-3-662-47967-4.
[Online]. Available: http://link.springer.com/10.1007/978-3-662-47967-4.

[32] A. Ehrenfeucht and G. Rozenberg, “Partial (set) 2-structures - part i: Basic notions
and the representation problem,” Acta Informatica, vol. 27, pp. 315–342, 4 Mar. 1990,
issn: 00015903. doi: 10.1007/BF00264611.

[33] ——, “Partial (set) 2-structures - part ii: State spaces of concurrent systems,” Acta
Informatica, vol. 27, pp. 343–368, 4 Mar. 1990, issn: 00015903. doi: 10.1007/
BF00264612.

[34] E. Badouel and P. Darondeau, Theory of regions, 1998. doi: 10.1007/3-540-65306-
6_22. [Online]. Available: http://link.springer.com/10.1007/3-540-65306-
6_22.

[35] A. Ghaffari, N. Rezg, and X. Xie, “Design of a live and maximally permissive petri net
controller using the theory of regions,” IEEE Transactions on Robotics and Automation,
vol. 19, pp. 137–142, 1 Feb. 2003, issn: 1042-296X. doi: 10.1109/TRA.2002.807555.
[Online]. Available: http://ieeexplore.ieee.org/document/1177171/.

[36] R. Lorenz, S. Mauser, and R. Bergenthum, “Theory of regions for the synthesis of
inhibitor nets from scenarios,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4546
LNCS, pp. 342–361, 2007, issn: 16113349. doi: 10.1007/978-3-540-73094-1_21.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-
73094-1_21.

[37] F. Basile, “Overview of fault diagnosis methods based on petri net models,” IEEE,
Jun. 2014, pp. 2636–2642, isbn: 978-3-9524269-1-3. doi: 10.1109/ECC.2014.6862631.
[Online]. Available: http://ieeexplore.ieee.org/document/6862631/.

[38] Github - rust-lang/nomicon: The dark arts of advanced and unsafe rust programming.
[Online]. Available: https://github.com/rust-lang/nomicon.

[39] E. Szpilrajn, “Sur l’extension de l’ordre partiel,” Fundamenta Mathematicae, vol. 16,
pp. 386–389, 1930, issn: 0016-2736. doi: 10.4064/fm-16-1-386-389. [Online].
Available: http://www.impan.pl/get/doi/10.4064/fm-16-1-386-389.

[40] M. Luby, “A simple parallel algorithm for the maximal independent set problem,”
SIAM Journal on Computing, vol. 15, pp. 1036–1053, 4 Nov. 1986, issn: 0097-5397.

95

https://www.tib.eu/de/suchen/id/TIBKAT%3A492829667
https://www.tib.eu/de/suchen/id/TIBKAT%3A017519519
https://www.tib.eu/de/suchen/id/TIBKAT%3A017519519
https://doi.org/10.1145/633642.803973
https://dl.acm.org/doi/10.1145/633642.803973
https://doi.org/10.2172/4242290
http://www.osti.gov/servlets/purl/4242290/
https://doi.org/10.1007/978-3-662-47967-4
http://link.springer.com/10.1007/978-3-662-47967-4
https://doi.org/10.1007/BF00264611
https://doi.org/10.1007/BF00264612
https://doi.org/10.1007/BF00264612
https://doi.org/10.1007/3-540-65306-6_22
https://doi.org/10.1007/3-540-65306-6_22
http://link.springer.com/10.1007/3-540-65306-6_22
http://link.springer.com/10.1007/3-540-65306-6_22
https://doi.org/10.1109/TRA.2002.807555
http://ieeexplore.ieee.org/document/1177171/
https://doi.org/10.1007/978-3-540-73094-1_21
https://link.springer.com/chapter/10.1007/978-3-540-73094-1_21
https://link.springer.com/chapter/10.1007/978-3-540-73094-1_21
https://doi.org/10.1109/ECC.2014.6862631
http://ieeexplore.ieee.org/document/6862631/
https://github.com/rust-lang/nomicon
https://doi.org/10.4064/fm-16-1-386-389
http://www.impan.pl/get/doi/10.4064/fm-16-1-386-389

doi: 10.1137/0215074. [Online]. Available: http://epubs.siam.org/doi/10.1137/
0215074.

96

https://doi.org/10.1137/0215074
http://epubs.siam.org/doi/10.1137/0215074
http://epubs.siam.org/doi/10.1137/0215074

Appendix A

Evaluation Artifacts

__Global Parent

12v-cpu0-psup_happened

ir3581-cpu-loop-0v9-vdd-oct_1:->On:set_end0

-4.0

ir3581-cpu-loop-vdd-core_1:->On:set_end0

-4.0

isl-vdd-ddrcpu13_1:->On:set_end0

-4.0

isl-vdd-ddrcpu24_1:->On:set_end0

-4.0

max15301-1v5-cpu-vdd-oct_1:->Powered:set_end0

-4.0

12v-cpu0-psup_permitted

-6.0

psu-cpu0 Off_post

-2.0

3v3-psup_happened

cpu_1:->Reset:set_end0

-4.0

ina226-ddr-cpu-13_1:->Powered:set_end0

-4.0

ina226-ddr-cpu-24_1:->Powered:set_end0

-4.0

ir3581-cpu-loop-0v9-vdd-oct_1:->Powered:set_end0

-4.0

ir3581-cpu-loop-vdd-core_1:->Powered:set_end0

-4.0

ir3581-cpu-parent_1:->Powered:set_end0

-4.0

max15053-2v5-cpu13_1:->Powered:set_end0

-4.0

max15053-2v5-cpu24_1:->Powered:set_end0

-4.0

oscillator:->Powered:set_end0

-4.0

si5395-clk-cpu_1:->Powered:set_end0

-4.0

si5395-clk-main:->Powered:set_end0

-4.0

3v3-psup_permitted

-6.0

main-psu Off_post

-2.0

5v-psup_happened

isl-vdd-ddrcpu13_1:->Powered:set_end0

-4.0

isl-vdd-ddrcpu24_1:->Powered:set_end0

-4.0

5v-psup_permitted

-6.0

-2.0

5vsb-psup_happened

pac-cpu_1:->Powered:set_end0

-4.0

5vsb-psup_permitted

-6.0

-2.0

b-psup-on_happened

main-psu:->On:set_end0

-4.0

psu-cpu0:->On:set_end0

-4.0

b-psup-on_permitted

-6.0

b-spi-sel-n_happened

cpu_1:->Reset:set_end4

-4.0

b-spi-sel-n_permitted

-6.0

bmc-vcc-3v3_happened

-4.0

bmc-vcc-3v3_permitted

-6.0

-2.0

c-reset-n_happened

cpu_1:->On:set_end0

-4.0

c-reset-n_permitted

-6.0

clk-main_happened

-4.0

clk-main_permitted

-6.0

si5395-clk-main Powered_post

-2.0

clk-sig_happened

-4.0

clk-sig_permitted

-6.0

oscillator Off_post

-2.0

en-1v5-cpu-vdd-oct_1_happened

max15301-1v5-cpu-vdd-oct_1:->On:set_end0

-4.0

en-1v5-cpu-vdd-oct_1_permitted

-6.0

en-2v5-cpu13_1_happened

max15053-2v5-cpu13_1:->On:set_end0

-4.0

en-2v5-cpu13_1_permitted

-6.0

en-2v5-cpu24_1_happened

max15053-2v5-cpu24_1:->On:set_end0

-4.0

en-2v5-cpu24_1_permitted

-6.0

en-vdd-ddrcpu13_1_happened

-4.0

en-vdd-ddrcpu13_1_permitted

-6.0

en-vdd-ddrcpu24_1_happened

-4.0

en-vdd-ddrcpu24_1_permitted

-6.0

ir3581-cpu-internal-loop-enable_1_happened

-4.0 -4.0

ir3581-cpu-internal-loop-enable_1_permitted

-6.0

ir3581-cpu-parent_1 Powered_post

-2.0

pll-dc-ok_happened

cpu_1:->Reset:set_end5

-4.0

pll-dc-ok_permitted

-6.0

pll-ref-clk0_1_happened

-4.0

pll-ref-clk0_1_permitted

-6.0

si5395-clk-cpu_1 Powered_post

-2.0

psup-pgood_happened

psup-pgood_permitted

-6.0

-2.0

vdd-core0-en_1_happened

-4.0

vdd-core0-en_1_permitted

-6.0

vdd-core0_1_happened

cpu_1:->Reset:set_end1

-4.0

vdd-core0_1_permitted

-6.0

ir3581-cpu-loop-vdd-core_1 Powered_post

-2.0

vdd-ddrcpu13_1_happened

cpu_1:->Reset:set_end2

-4.0

ncp-cpu13_1:->On:set_end0

-4.0

vdd-ddrcpu13_1_permitted

-6.0

isl-vdd-ddrcpu13_1 Powered_post

-2.0

vdd-ddrcpu24_1_happened

-4.0ncp-cpu24_1:->On:set_end0

-4.0

vdd-ddrcpu24_1_permitted

-6.0

isl-vdd-ddrcpu24_1 Powered_post

-2.0

vdd-oct-en0-l2_1_happened

-4.0

vdd-oct-en0-l2_1_permitted

-6.0

vtt-ddrcpu13_1_happened

-4.0

vtt-ddrcpu13_1_permitted

-6.0

ncp-cpu13_1 Off_post

-2.0

vtt-ddrcpu24_1_happened

-4.0

vtt-ddrcpu24_1_permitted

-6.0

ncp-cpu24_1 Off_post

-2.0

w0v9-vdd-oct0_1_happened

-4.0

w0v9-vdd-oct0_1_permitted

-6.0

ir3581-cpu-loop-0v9-vdd-oct_1 Powered_post

-2.0

w1v5-cpu-vdd-oct_1_happened

-4.0

w1v5-cpu-vdd-oct_1_permitted

-6.0

max15301-1v5-cpu-vdd-oct_1 Configured_post

-2.0

w2v5-cpu13_1_happened

-4.0

-4.0

w2v5-cpu13_1_permitted

-6.0

max15053-2v5-cpu13_1 Powered_post

-2.0

w2v5-cpu24_1_happened

-4.0

-4.0

w2v5-cpu24_1_permitted

-6.0

max15053-2v5-cpu24_1 Powered_post

-2.0

bmc:=>On

-2.0

-2.0

-2.0

-2.0

cpu_1:->Off

cpu_1 Off_post

-4.0

cpu_1:->Reset:set_begin0

-4.0

cpu_1:->Reset

cpu_1 Reset_post

-4.0

-4.0

-4.0

-4.0

cpu_1:->Reset:set_begin1

-4.0

-4.0

-4.0

cpu_1:->Reset:set_begin2

-4.0

-4.0-4.0 -4.0-4.0 -4.0 -4.0

-4.0-4.0

-4.0

cpu_1:->Reset:set_begin3

-4.0

cpu_1_wait

cpu_1:->Reset:set_end3

-4.0

-4.0

-4.0

cpu_1:->Reset:set_begin4

-4.0

-4.0

-4.0

cpu_1:->Reset:set_begin5

-4.0

-4.0

-4.0

-4.0

cpu_1:->On:set_begin0

-4.0

cpu_1:->On

cpu_1 On_post

-4.0

-4.0

-4.0

-4.0

ina226-ddr-cpu-13_1:->Off

ina226-ddr-cpu-13_1:->Powered:set_begin0

-4.0

ina226-ddr-cpu-13_1:->Powered

-4.0

-4.0

-4.0

ina226-ddr-cpu-24_1:->Off

ina226-ddr-cpu-24_1:->Powered:set_begin0

-4.0

ina226-ddr-cpu-24_1:->Powered

-4.0

-4.0

-4.0

ir3581-cpu-loop-0v9-vdd-oct_1:->Off

ir3581-cpu-loop-0v9-vdd-oct_1 Off_post

-4.0

ir3581-cpu-loop-0v9-vdd-oct_1:->Powered:set_begin0

-4.0

ir3581-cpu-loop-0v9-vdd-oct_1:->Powered

-4.0

-4.0

-4.0

-4.0

ir3581-cpu-loop-0v9-vdd-oct_1:->On:set_begin0

-4.0

ir3581-cpu-loop-0v9-vdd-oct_1:->On

-2.0

ir3581-cpu-loop-0v9-vdd-oct_1 On_post

-4.0

-4.0

-4.0

-4.0

ir3581-cpu-loop-vdd-core_1:->Off

ir3581-cpu-loop-vdd-core_1 Off_post

-4.0

ir3581-cpu-loop-vdd-core_1:->Powered:set_begin0

-4.0

ir3581-cpu-loop-vdd-core_1:->Powered

-4.0

-4.0

-4.0

-4.0

ir3581-cpu-loop-vdd-core_1:->On:set_begin0

-4.0

ir3581-cpu-loop-vdd-core_1:->On

-2.0

ir3581-cpu-loop-vdd-core_1 On_post

-4.0

-4.0

-4.0

-4.0

ir3581-cpu-parent_1:->Off

ir3581-cpu-parent_1 Off_post

-4.0

ir3581-cpu-parent_1:->Powered:set_begin0

-4.0

ir3581-cpu-parent_1:->Powered

-4.0

-4.0

-4.0

-4.0

ir3581-cpu-parent_1:->Configured

-4.0

-2.0

ir3581-cpu-parent_1 Configured_post

-4.0

isl-vdd-ddrcpu13_1:->Off

isl-vdd-ddrcpu13_1 Off_post

-4.0

isl-vdd-ddrcpu13_1:->Powered:set_begin0

-4.0

isl-vdd-ddrcpu13_1:->Powered

-4.0

-4.0

-4.0

-4.0

isl-vdd-ddrcpu13_1:->On:set_begin0

-4.0

isl-vdd-ddrcpu13_1:->On

-2.0

isl-vdd-ddrcpu13_1 On_post

-4.0

-4.0

-4.0

-4.0

isl-vdd-ddrcpu24_1:->Off

isl-vdd-ddrcpu24_1 Off_post

-4.0

isl-vdd-ddrcpu24_1:->Powered:set_begin0

-4.0

isl-vdd-ddrcpu24_1:->Powered

-4.0

-4.0

-4.0

-4.0

isl-vdd-ddrcpu24_1:->On:set_begin0

-4.0

isl-vdd-ddrcpu24_1:->On

-2.0 isl-vdd-ddrcpu24_1 On_post

-4.0

-4.0

-4.0

-4.0

main-psu:->Off

-4.0

main-psu:->On:set_begin0

-4.0

main-psu:->On

-2.0 -2.0-2.0-2.0-2.0

main-psu On_post

-4.0

-4.0

-4.0

-4.0

max15053-2v5-cpu13_1:->Off

max15053-2v5-cpu13_1 Off_post

-4.0

max15053-2v5-cpu13_1:->Powered:set_begin0

-4.0

max15053-2v5-cpu13_1:->Powered

-4.0

-4.0

-4.0

-4.0

max15053-2v5-cpu13_1:->On:set_begin0

-4.0

max15053-2v5-cpu13_1:->On

-2.0

max15053-2v5-cpu13_1 On_post

-4.0

-4.0

-4.0

-4.0

max15053-2v5-cpu24_1:->Off

max15053-2v5-cpu24_1 Off_post

-4.0

max15053-2v5-cpu24_1:->Powered:set_begin0

-4.0

max15053-2v5-cpu24_1:->Powered

-4.0

-4.0

-4.0

-4.0

max15053-2v5-cpu24_1:->On:set_begin0

-4.0

max15053-2v5-cpu24_1:->On

-2.0

max15053-2v5-cpu24_1 On_post

-4.0

-4.0

-4.0

-4.0

max15301-1v5-cpu-vdd-oct_1:->Off

max15301-1v5-cpu-vdd-oct_1 Off_post

-4.0

max15301-1v5-cpu-vdd-oct_1:->Powered:set_begin0

-4.0

max15301-1v5-cpu-vdd-oct_1:->Powered

max15301-1v5-cpu-vdd-oct_1 Powered_post

-4.0

-4.0

-4.0

-4.0

max15301-1v5-cpu-vdd-oct_1:->Configured

-4.0

-4.0

max15301-1v5-cpu-vdd-oct_1:->On:set_begin0

-4.0

max15301-1v5-cpu-vdd-oct_1:->On

-2.0

max15301-1v5-cpu-vdd-oct_1 On_post

-4.0

-4.0

-4.0

-4.0

ncp-cpu13_1:->Off

-4.0

ncp-cpu13_1:->On:set_begin0

-4.0

ncp-cpu13_1:->On

-2.0

ncp-cpu13_1 On_post

-4.0

-4.0

-4.0

-4.0

ncp-cpu24_1:->Off

-4.0

ncp-cpu24_1:->On:set_begin0

-4.0

ncp-cpu24_1:->On

-2.0

ncp-cpu24_1 On_post

-4.0

-4.0

-4.0

-4.0

oscillator:->Off

-4.0

oscillator:->Powered:set_begin0

-4.0

oscillator:->Powered

-2.0

oscillator Powered_post

-4.0

-4.0

-4.0

-4.0

pac-cpu_1:->Off

pac-cpu_1:->Powered:set_begin0

-4.0

pac-cpu_1:->Powered

-4.0-4.0

-4.0

-4.0

pac-cpu_1:->Configured

-4.0

-2.0

-2.0-2.0

-2.0-2.0

-2.0

-2.0

psu-cpu0:->Off

-4.0

psu-cpu0:->On:set_begin0

-4.0

psu-cpu0:->On

-2.0

psu-cpu0 On_post

-4.0

-4.0

-4.0

-4.0

si5395-clk-cpu_1:->Off

si5395-clk-cpu_1 Off_post

-4.0

si5395-clk-cpu_1:->Powered:set_begin0

-4.0

si5395-clk-cpu_1:->Powered

-4.0

-4.0

-4.0

-4.0

si5395-clk-cpu_1:->Configured

-4.0

-2.0

si5395-clk-cpu_1 Configured_post

-4.0

si5395-clk-main:->Off

si5395-clk-main Off_post

-4.0

si5395-clk-main:->Powered:set_begin0

-4.0

si5395-clk-main:->Powered

-4.0

-4.0

-4.0

-4.0

si5395-clk-main:->Configured

-4.0

-2.0

si5395-clk-main Configured_post

-4.0

Figure A.1: Marked sequence graph for a single ThunderX CPU used in the evaluation.
The red vertices are the steps from the baseline output, see Listing 4.

sequence: (

97

(1
set-to
wire.b-psup-on)

(1
configure
pac-cpu-0

(1.5
monitor
wire.psup-pgood

(1.5
monitor
wire.3v3-psup

(1.5
monitor
wire.5v-psup

(1.5
monitor
wire.12v-cpu0-psup

(2 configure ina226-ddr-cpu-13-0)
(2 configure si5395-clk-main)
(2 configure ina226-ddr-cpu-24-0)
(2 configure si5395-clk-cpu-0)
(2
configure
isl-vdd-ddrcpu13-0

(2
configure
isl-vdd-ddrcpu24-0

(2 configure ir3581-cpu-parent-0)
(2.5
monitor
wire.clk-main

(2.5
monitor
wire.pll-ref-clk0-0

(3
configure
ir3581-cpu-loop-vdd-core-0

(3
configure
ir3581-cpu-loop-0v9-vdd-oct-0

(4
set-to
wire.vdd-core0-en-0)

(4
configure
max15301-1v5-cpu-vdd-oct-0

(5
set-to

98

wire.vdd-oct-en0-l2-0)
(5
set-to
wire.en-1v5-cpu-vdd-oct-0)

(5.5
monitor
wire.w0v9-vdd-oct0-0

(5.5
monitor
wire.w1v5-cpu-vdd-oct-0

(6
set-to
wire.en-2v5-cpu13-0)

(6
set-to
wire.en-2v5-cpu24-0)

(6
set-to
wire.en-vdd-ddrcpu13-0)

(6
set-to
wire.en-vdd-ddrcpu24-0)

(6.5
monitor
wire.vdd-ddrcpu13-0

(6.5
monitor
wire.vdd-ddrcpu24-0

(6.5
monitor
wire.w2v5-cpu13-0

(6.5
monitor
wire.vtt-ddrcpu13-0

(6.5
monitor
wire.w2v5-cpu24-0

(6.5
monitor
wire.vtt-ddrcpu24-0

(7 wait (3 ms))
(8
set-to
wire.b-spi-sel-n)

(9
set-to
wire.pll-dc-ok)

(10
set-to

99

wire.c-reset-n)
)

Listing 3: Sanitized baseline output.
b-psup-on_permitted

pac-cpu-0:->Configured

psup-pgood_happened
3v3-psup_happened
5v-psup_happened
12v-cpu0-psup_happened

ina226-ddr-cpu-13-0:->Configured
si5395-clk-main:->Configured
ina226-ddr-cpu-24-0:->Configured
si5395-clk-cpu-0:->Configured
isl-vdd-ddrcpu13-0:->Configured
isl-vdd-ddrcpu24-0:->Configured
ir3581-cpu-parent-0:->Configured

clk-main_happened
pll-ref-clk0-0_happened

ir3581-cpu-loop-vdd-core-0:->Configured
ir3581-cpu-loop-0v9-vdd-oct-0:->Configured

vdd-core0-en-0_permitted

max15301-1v5-cpu-vdd-oct-0:->Configured

vdd-oct-en0-l2-0_permitted
en-1v5-cpu-vdd-oct-0_permitted

w0v9-vdd-oct0-0_happened
w1v5-cpu-vdd-oct-0_happened

en-2v5-cpu13-0_permitted
en-2v5-cpu24-0_permitted
en-vdd-ddrcpu13-0_permitted
en-vdd-ddrcpu24-0_permitted

vdd-ddrcpu13-0_happened
vdd-ddrcpu24-0_happened
w2v5-cpu13-0_happened
vtt-ddrcpu13-0_happened
w2v5-cpu24-0_happened
vtt-ddrcpu24-0_happened

cpu_1_wait

100

b-spi-sel-n_permitted
pll-dc-ok_permitted
c-reset-n_permitted

Listing 4: Translated sanitized baseline output.

101

	List of Figures
	List of Listings
	Introduction
	Problem Discovery & Description
	Enzian
	Board Management Controller
	Hardware
	Classification/Terminology
	Faults & Reaction Times

	Dynamic Power And Clock Management
	Distinction from Prior Work
	Platform State
	Reactivity
	Correctness
	Optimality

	Solution Requirements
	Bus
	I2C
	SMBus
	PMBus

	Timing Requirements & Assumed Stability
	Strict Power Dependencies
	Hardware Interface Ordering Requirements
	Infrastructure
	Logging

	Approach 1 — Constraint Satisfaction Problem
	Background
	Compilation

	Modelling
	Sequence Generation

	Custom Strategies
	Summary

	Approach 2 — Planning
	Background
	Planning

	Modelling
	Fault Recovery
	Whole Model

	Summary

	Approach 3 — Discrete Event Systems
	Background
	Discrete Event Systems
	Petri Nets

	Modelling
	Petri Nets as complete descriptors

	Summary

	Solution
	Background
	Partial Orders
	Maximum Independent Set
	Integer Linear Programming

	High-Level Overview
	Model Controller
	Model Status and Model Controller Loop
	Model Controller Operation
	Configuration Management

	Interface
	Hardware Interaction

	Present State
	Component-DES
	Reading Hardware State
	Restricted Knuselian Component States

	Platform State Transition Manager
	Target Platform State Resolution
	Sequences
	Operation

	State Transitions
	PET State changes

	Evaluation
	Scaling and Online-Feasibility of Sequencing and State Generation
	Setup
	Results & Interpretation
	Summary

	Simple Correctness of Sequencing and State Generation
	Setup
	Result
	Interpretation

	Summary

	Conclusion
	Future Work
	Summary

	Bibliography
	Evaluation Artifacts

