
Bachelor’s Thesis Nr. 489b

Systems Group, Department of Computer Science, ETH Zurich

A tool for debugging JTAG

by

Edem Memetov

Supervised by

Prof. Timothy Roscoe, Daniel Schwyn

February 2024 - August 2024

Abstract

Debuggers not hosted on the target can provide users with bare-metal
access to the machine. This way, one can establish a debug session even
when no operating system is present, e.g., right after the power-up. The
JTAG communication protocol is often used to interface the external
debuggers with the target’s infrastructure. On the Enzian research com-
puter, such a connection between an ARM processor and the specialized
adapter fails significantly limiting the debugging capabilities of Enzian’s
CPU. Here, we analyze the debugging infrastructure on Enzian and find
an underlying problem with the reset signal sent to the CPU. To this
end, we employ JTAG adapters that expose low-level interface to the
user. We also implement a JTAG controller based on an STM32 Nucleo
board that directly controls the protocol signals. We demonstrate that it
can successfully drive JTAG scan chains and communicate with the rest
of the processor’s debug infrastructure through the Debug Access Port
(DAP). Additionally, we propose an alternative method for attaching
a debugger to Enzian’s CPU using the onboard programming module
and the Open On-Chip Debugger (OpenOCD). The thesis highlights the
importance of adhering to the standard when implementing a design as
this is the cause of most errors we encountered in this work.

Acknowledgements

I would like to express my gratitude to the Systems Group for giving me
the opportunity to work on this fascinating topic. I am especially thankful
to my supervisor, Daniel Schwyn, for his invaluable feedback and guid-
ance throughout the project. Finally, I want to thank my family for their
unwavering support over the past six months.

ii

Contents

Contents iii

1 Introduction 1

2 Background 3
2.1 JTAG . 3

2.1.1 Test Access Port . 3
2.1.2 Test Logic . 5
2.1.3 TAP controller . 5
2.1.4 Registers . 7

2.2 SWD . 8
2.3 ARM Debug Interface and ARM Debug Access Port 8

2.3.1 The Debug Port . 9
2.3.2 DP registers . 11
2.3.3 AP registers . 12
2.3.4 ROM Tables and Debug register files 13

2.4 JTAG infrastructure on Enzian 13
2.5 DAP infrastructure on ThunderX 15

3 Implementation 16
3.1 Fixing the JTAG issues with ThunderX 16

3.1.1 Replicating the Problem 16
3.1.2 Platform Cable USB II 18
3.1.3 STM32 Nucleo board . 23
3.1.4 Solution . 29
3.1.5 Further problems with the Autodetection 29
3.1.6 CoreSight Access Tool 31

3.2 OpenOCD . 34
3.2.1 Motivation for OpenOCD 34
3.2.2 Brief Overview . 36

iii

Contents

3.2.3 Simple setup . 36
3.2.4 Interface file for the onboard adapter 37
3.2.5 ThunderX’s configuration file 39

4 Evaluation 42
4.1 STM32 . 42

4.1.1 JTAG level . 42
4.1.2 Data input . 42
4.1.3 DAP level . 43
4.1.4 Clock speed . 45

4.2 OpenOCD . 47
4.2.1 OpenOCD’s limitations and boot problem 47
4.2.2 JTAG and DAP API . 48

5 Conclusion 51

A Appendix 54
A.1 Failed autodetection log . 54
A.2 Successful autodetection log . 55
A.3 MEM-AP memory read . 56
A.4 Register read failure in OpenOCD 57
A.5 OpenOCD to STM32 connection log 59

Bibliography 60

iv

Chapter 1

Introduction

The JTAG standard was developed in the 1980s by the Joint Test Action
Group and later codified in IEEE 1149.1 [24]. The standard introduced a
serial interface and a transport protocol originally employed for the boundary
scan, a mechanism for design verification and testing of printed circuit boards.
However, nowadays, JTAG is not limited to this. The chip manufacturers
extend the protocol and use it to expose the device to the outside world. In
this way, the JTAG port serves as a bridge between the adapter and the device
components. Many manufacturers also provide their own JTAG adapters and
the associated software. Thus effectively building a closed ecosystem. For the
CPUs, the port usually connects the adapter to the debug infrastructure on
the chip, which allows the user to remotely connect to the target and launch
a debug session with the processor through the specialized IDE. Sometimes,
particularly in small embedded systems, such a connection goes directly to
the memory bus, circumventing the microprocessor. In this scenario, the
JTAG port is used to flash the program into the main memory.

The Enzian research computer [14] developed by Systems Group at ETH
Zürich heavily utilizes JTAG. Various board components, including the
Marvell Cavium ThunderX-1 CPU and the Xilinx Virtex Ultrascale+ FPGA,
are exposed to the user through the JTAG connectors. ThunderX connects the
JTAG port to the debug and tracing infrastructure compliant with the ARM
Debug Interface (ADI) [13]. ARM provides its own IDE, ARM Development
Studio that interacts with the ADI via various adapters. The lab has one of
them called DSTREAM [4].

The mixture of different chip, board, probe, and software designers can
easily introduce inconstencies. When we plug the DSTREAM adapter into
ThunderX’s JTAG port (Figure 1.1) and try to initiate the bare-metal debug
session from the ARM Development Studio, the connection fails. As it often
happens with complex systems, it is hard to pinpoint the root of the problem:
whether it lies with the CPU, with the way the processor is integrated into

1

1. Introduction

the PCB, or if the problem is with how DSTREAM drives ThunderX’s debug
infrastructure. It is also unclear whether the fault is at the level of the JTAG
protocol or higher at the ADI.

Figure 1.1: DSTREAM connected the CPU’s JTAG header on Enzian

The main goal of our work is to locate and fix this problem so that we can es-
tablish a debug session with ThunderX. Along the way, we will present JTAG
adapters and the associated software that enable users to manually drive the
JTAG scan chains or interact with the CPU’s debug infrastructure through
the ARM Debug Interface. We will also develop a JTAG controller using an
STM32 Nucleo board that provides the most basic bit-by-bit access to the
JTAG port. We will thoroughly analyze JTAG’s and ADI’s communication
models so that, in the end, we can construct the signal sequences required to
initiate data transactions with the CPU’s debug infrastructure through the
JTAG port. We will run the sequences on our Nucleo board that show the
ability of our JTAG adapter to successfully interact with the programming
model of the ARM Debug Interface. We will conclude the thesis by explor-
ing in more detail the JTAG infrastructure on Enzian and show how the
onboard programming module and the open-source debugger, OpenOCD,
can be used to replace (albeit with quite a few unresolved errors) the current
ARM Development Studio → DSTREAM → ThunderX debugging setup on
Enzian.

2

Chapter 2

Background

The chapter begins by describing the JTAG standard in enough detail to
build a JTAG controller. The ADI section follows, providing the necessary
background for our work with ThunderX’s debug infrastructure. The chapter
concludes by highlighting specific details and nuances about JTAG and ADI
on Enzian and ThunderX.

2.1 JTAG

As mentioned in the introduction, JTAG’s original application was the bound-
ary scan (Figure 2.1). It introduces register cells that capture and control
logic signals on the chip, in particular, pins on the component’s boundary.
The cells form a chain called a boundary-scan register so the signals can be
sequentially shifted out through the serial interface called the Test Access
Port (TAP). Nowadays, the JTAG infrastructure on the chip often acts as a
bridge between debug adapters and the target’s debugging modules. The
JTAG infrastructure consists of the TAP and the test logic. The test logic
is the circuitry behind the TAP. Its task is to process the signals coming in
from the port. The operation of the test logic is managed by the finite state
machine called the TAP controller.

2.1.1 Test Access Port

The Test Access Port is a serial interface to the test logic. The TAP consists of
the following connections:

• Test clock input (TCK)

• Test mode select input (TMS) is a signal that drives the state machine
of the TAP controller. The signal is sampled by the test logic on the
rising edge of the clock TCK.

3

2. Background

Figure 2.1: Typical Boundary Scan Setup

Figure 2.2: Daisy chain of 3 Test Access Ports

• Test data input (TDI) supplies the test logic (the rest of the JTAG
system positioned behind the TAP) with instructions and data. The
signal is sampled on the rising edge of the clock TCK.

• Test data output (TDO) is a signal shifted out from test logic. To avoid
race conditions with the input signals, TDO is guaranteed to become
stable on the falling edge of the clock TCK.

• Test reset input (TRST*) is an optional active low signal. Logic 0
asynchronously resets the state machine of the TAP controller.

The TAPs of different devices can be interconnected. Usually, the TAPs
share the control and clock signals, while the I/O signals are daisy-chained
(i.e., the output of the predecessor is fed into the input of the successor in
the sequence) (Figure 2.2). This is the setup used by Enzian (Section 2.4).
Nonetheless, any other sensible arrangement is also allowed.

4

2.1. JTAG

2.1.2 Test Logic

The test logic exposes to the user a set of instructions that operate on the
associated shift registers. The test logic holds the current instruction in a spe-
cial register called the instruction register. The JTAG standard mostly focuses
on defining instructions needed for the boundary scan, but manufacturers
may extend the functionality of the test logic by introducing new commands.

As mention earlier, a synchronous finite state machine called the TAP con-
troller controls the test logic. The transitions happen according to the TMS
value during the rising edge of the clock TCK. Based on the state of the
TAP controller, the test logic interprets the incoming TDI signal as either a
new instruction or as input data. For the former, the input is then shifted
into the instruction register. While for the latter, the input is loaded into the
test data register associated with the current instruction. In either case, the
TDO signal latches onto the opposite end of the register forming a TDI-shift
register-TDO path. The shift process is sequential and happens one bit per
clock cycle starting with the least significant bit. TDI and TDO always share
the same register. We will go through parts of the test logic in more detail.

2.1.3 TAP controller

The finite state machine (Figure 2.3) contains distinctly visible state sequences
that correspond to instruction (red) and data (green) processing. They both
operate in the same way by selecting the correct shift register, loading the
previous value into the register, shifting in new data or shifting out the result,
and passing the contents to the test logic. The rest of the state machine
implements the reset and idling functionality. In particular:

• Test-Logic-Reset is the initial state of the TAP controller after the power-
up. It brings the system into a known state by loading the binary code
of IDCODE (if implemented) or BYPASS into the instruction registers.
The state machine is designed so that the Test-Logic-Reset is reachable
from any state if TMS is held high for five consecutive clock periods.
Alternatively, low TRST forces the state machine into Test-Logic-Reset.

• Run-Test/Idle is a looping state that the state machine can enter be-
tween the scan operations. It is used by instructions such as a self-test
RUNBIST that requires additional clock cycles to finish its execution.

• Select-IR and Select-DR connect the TDI and TDO lines to the instruc-
tion or test data register, respectively. The test data register is chosen
based on the current instruction.

• Capture-DR latches the test data register onto the TDI-TDO scan chain.
Capture-IR latches the instruction register onto the scan chain. The
latched value of the instruction register is always the same. According

5

2. Background

Figure 2.3: JTAG state machine

to the standard, the two least significant bits should be 01. The rest is
implementation-specific.

• Shift-IR and Shift-DR. Each pass through these states shifts 1 bit along
the TDI-shift register-TDO path on the rising edge of the clock. The
last bit is shifted during the transition to Update-IR/Update-DR.

• Update-IR and Update-DR pass the data in the instruction or test data
register to the rest of the test logic for processing. Note that during the
shift phase, the register is usually not visible to the rest of the system
as it constantly changes.

• Exit1-IR/Pause-IR/Exit2-IR and their DR counterparts indicate the end
of the shifting process. The TAP controller may temporarily halt the
procedure or completely terminate it. Two separate exit states allow
us to implement a choice between resuming and finishing the shifting
after leaving Pause-IR while also providing an immediate path to the
Update state, circumventing the Pause state.

6

2.1. JTAG

2.1.4 Registers

The instruction register contains the binary code of the current instruction.
Except for BYPASS, these values are implementation-specific and often poorly
documented. The size of the register is also not set by the standard. When
testing devices in the lab, we encountered devices with 4-bit, 8-bit, and 12-bit
instruction registers.

As mentioned earlier, each JTAG instruction is associated with the specific test
data register. The standardized instructions are called public. Among them,
we have extensively used IDCODE and BYPASS. We ignored others since
they belong to boundary scan procedures. Manufacturers can extend the
instruction set with private instructions. For instance, APACC and DPACC
implemented in the JTAG-Debug Port of the ARM CoreSight architecture
provide access to the debug logic (Section 2.3.1).

BYPASS instruction selects the test data register of length 1 with an initial
value of 0. Data shifted through the BYPASS register does not affect the rest
of the test logic. The intended use case of BYPASS is to minimize to 1 clock
cycle the path through unused devices on the daisy chain.

BYPASS is the only instruction with the binary code set by the standard:
11...1. 1 Additionally, the designs often default the behavior of the test logic
to BYPASS when an undefined binary code is loaded into the instruction
register. The uniform binary code value of the BYPASS register and its fixed
size make it possible to count the devices on the scan chain. The algorithm
is described in detail in Reverse Engineering paper by Felix Domke [18]. It
starts with navigating each TAP controller on the chain into the BYPASS
mode by shifting in a long sequence of 1s into the instruction registers (If the
sequence contains hundreds of bits, we can be sure that all controllers are in
the BYPASS mode even for very long scan chains since the usual instruction
register width is orders of magnitude smaller). In the next step, the algorithm
inputs 11...1011...1 into the data path. Since each BYPASS test data register
contains 1 bit, the number of devices on the chain is equal to the offset of bit
0 on the TDO line compared to TDI. DSTREAM uses a similar procedure to
enumerate the scan chain (Section 3.1.5).

IDCODE uniquely identifies the device. Its 32-bit test data register contains
manufacturer, part number, and version fields. IDCODE is loaded by default
into the instruction register when the state machine enters Test-Logic-Reset.
This makes it trivial to determine all the devices on the board by immediately
shifting out the contents of all data registers after the reset.

IDCODE is an optional instruction. If it is not implemented, the test logic
defaults to BYPASS. To differentiate between these 2 cases, the least significant

1Although earlier versions of the standard also assigned 00...0 to EXTEST.

7

2. Background

bit of the identification register is always set to 1. (Recall that the BYPASS
always starts as 0)

2.2 SWD

Serial Wire Debug protocol (SWD) [37] was developed by ARM as an alterna-
tive to JTAG for communication with the debug infrastructure of ARM-based
systems. The authors addressed the shortcomings of the JTAG protocol
caused by its original design for PCB testing. The main difference is the
lower pin count: SWD only uses a clock signal, SWCLK, and a bidirectional
data signal, SWDIO. SWD’s communication model is packet-based.

2.3 ARM Debug Interface and ARM Debug Access Port

CoreSight technology [3] developed by ARM defines a standard for debug
and trace infrastructure of ARM-based processors. The ARM Debug Interface
(ADI) [8] is a crucial component of the CoreSight Architecture. It connects
external debuggers to the debug and tracing modules on ARM-based chips.
In our work, we focused solely on ADIv5, as it is the version of the interface
implemented in ThunderX [13]. The physical implementation of the ADI is
called the Debug Access Port (DAP). DAP is divided into the Debug Port
(DP) and the Access Port (AP).

The Debug Port is responsible for establishing a physical connection with the
debug adapters. For this purpose, it can utilize the JTAG transport protocol.
This version of the Debug Port is called JTAG-DP. JTAG-DP must integrate
the Test Access Port, the TAP controller, and the rest of the test logic into the
module. Instead of JTAG, the DP also has the option to use the SWD protocol
(SWD-DP). Or even combine JTAG and SWD in a single module (SWJ-DP).
In that case, the dual DP module can switch between two modes of operation
via a 16-bit signal sequence on the TMS (for the JTAG→SWD switch) or the
SWDIO (SWD → JTAG) lines. (Note that on such dual purpose ports, TMS
and SWDIO share the same pin.) The DP forwards the incoming input data
or read requests to the second half of the system, the Access Port, which
programs the debug peripherals. The DP provides the user with feedback
about the success of the transactions in the form of acknowledgment fields.
Additionally, it implements performance optimizations such as a transaction
counter that allows us to trigger multiple sequential memory accesses with a
single I/O request. The DP is also responsible for power management and
the reset logic of the DAP.

Access Ports connect the DAP to various onboard peripherals. The version
of the Access Port called JTAG-AP is used for legacy devices that are part
of JTAG scan chains. However, the most common are Memory Access Ports

8

2.3. ARM Debug Interface and ARM Debug Access Port

(MEM-AP), which use memory map as a programming model for external
debuggers. MEM-APs are further subdivided by the type of memory bus.
The version that uses AHB (AHB-AP) is designed “to directly connect to an
AHB-based memory system” [1]; thus, having access to the main memory
bypassing the CPU. This type of access port is used, for example, on the
STM32 Nucleo boards. On the other hand, APB-AP are generally designed to
connect to an APB bus for a dedicated debugging and tracing memory space
that is separate from the main memory but still accessible from the CPU. In
that case, debug peripherals and system topology information are mapped
onto 4K pages in the address space of APB-AP. Pages associated with debug
peripherals are called debug register files. At the same time, the topology
information is stored in ROM tables.

According to the manual, a DAP must include a single Debug Port that can
multiplex communication to multiple Access Ports. We can mix Access Ports
of different types. A single JTAG-AP can access up to eight JTAG daisy
chains, while multiple debug peripherals may be mapped into the memory
space of a single MEM-AP.

The manufacturers may extend the standard functionality of a MEM-AP by
allowing variable memory size accesses (Large Data Extension) or variable
addressing length (Large Physical Address Extension). Another optional
extension called packed transfer can combine I/O to multiple bytes at a fixed
offset into a single-word operation. Note that this concept is orthogonal to
the transaction counter.

AP and DP implement the above functionality through the series of 32-bit
registers gathered together in register banks. Additionally, JTAG-DP extends
the JTAG instruction set with two custom commands, DPACC and APACC,
that allow the external debugger to interact with the AP and DP registers.
The general overview of the Debug Access Port is shown in Figure 2.4.

2.3.1 The Debug Port

In this section, we describe JTAG-DP, the DP version utilized by Thun-
derX [13]. Apart from implementing standard BYPASS and IDCODE instruc-
tions, JTAG-DP extends the instruction set by introducing ABORT, DPACC,
and APACC commands. The binary codes of JTAG-DP instruction are stan-
dardized, although the width of the instruction register can be either 4 or 8
bits.

ABORT stops any AP operation, such as reading and writing to the memory
space.

DPACC and APACC are used to access the registers in the DP and AP
register banks, respectively. The test data registers of DPACC and APACC
follow the same structure: 35-bit registers with bits [34:3] holding the transfer

9

2. Background

Figure 2.4: Debug Access Port

data and [2:0] control bits. The exact meaning of these fields depends on the
execution context, particularly on the current state of the TAP controller and
on the previous JTAG instruction.

If the current instruction is DPACC, then the control bits [2:0] of the DPACC
test data register latched onto the scan chain in CAPTURE-DR hold the
response sequence of the previous transaction (either APACC or DPACC).
The bits indicate whether the transaction has finished (OK/FAULT response
has value 0b010) or not (WAIT response has value 0b001). Note that the logic
does not differentiate between successful and unsuccessful transactions. This
information is stored separately in the control register CTRL/STAT in the DP
register bank. We must initiate a separate DPACC read to get its contents. In
particular, CTRL/STAT contains a sticky error flag STICKYERR that indicates
a memory access error. Since the bit is sticky, it persists throughout the rest
of the memory access transactions. Until it is cleared, all further memory
accesses are discarded by the test logic in JTAG-DP. Additionally, if the
current DPACC was directly preceded by a successful register read (either
APACC or DPACC), then the data bits [34:3] hold the transaction output.
Otherwise, the contents of the transfer field are implementation-defined.

When the shifted input from the scan chain is is passed to the test logic in
the UPDATE-DR state, DPACC holds the information about the subsequent
DP register access. The least significant control bit [0] in DPACC indicates
whether it is a read (0b1) or a write operation (0b0). Bits [2:1] select the target
register in the DP register bank. In the case of a write operation, the data field
contains the value we want to write. Note that in the initial version of the
Debug Port (DPv0), the register bank consisted only of 3 registers, so 2 bits
were enough to address them. Newer versions have 5 (DPv1) and 8 (DPv2)
registers in the bank. In that case, field [2:1] forms only part of the address;
the second half comes from the DPBANKSEL field in the SELECT register of

10

2.3. ARM Debug Interface and ARM Debug Access Port

the DP register bank. To bootstrap, the SELECT register is addressed by just
the [2:1] field with values 10. So that the general DP register access becomes
the following sequence of JTAG instructions: 1. DPACC that writes to the
SELECT register and updates the DPBANKSEL field. 2. DPACC that writes
to the intended register. The addressing ([2:1] and DPBANKSEL values for
each register can be found in Table B3-5 of the ADI specification [8].

APACC operates the same way as DPACC, except that we have to specify
one of the APs connected to the Debug Port (as there can be multiple). Also,
the AP registers are split into multiple register banks, each of which can hold
up to 4 registers. To facilitate these changes, the APSEL and APBANKSEL
fields of the SELECT register pick the AP and the register bank, respectively.
Meanwhile, the [2:1] bits of the APACC form an offset into the selected
register bank. Summing it up, the general AP register access becomes the
following sequence of JTAG instructions: 1. DPACC that writes to the
SELECT register and updates the APSEL and APBANKSEL fields. 2. APACC
that writes to the intended register. The exact address for each register can
be found in Table C2-6 of the ADI specification [8].

Note that the standard does not set the time it takes to process the access
instruction, starting from passing the register contents to the rest of the test
logic in CAPTURE-DR and loading the output in UPDATE-DR. Thus, on
page B3-100, the specification [8] suggests that the debuggers navigate the
state machine between CAPTURE-DR and UPDATE-DR through the looping
IDLE state so that the debugger can adjust to the implementation-dependent
waiting times.

2.3.2 DP registers

As we mentioned in the previous section, each version of the Debug Port
introduced new registers. We will concentrate on DPv1 because this version
is implemented by ThunderX’s DAP. (We determine that later in Section
3.1.6.)

• The Debug Port Identification Register, DPIDR. Apart from the man-
ufacturer identity and the device’s part number, DPIDR contains fields
indicating the version of the Debug Port (value 1 corresponds to DPv1)
and supported extensions such as transaction counter (MIN field). The
DPIDR is organized such that its fields overlap with their counterparts
in the JTAG’s IDCODE register. Additional fields of DPIDR (such as
MIN) that are not present in IDCODE are placed in the bits occupying
the second half of the Partnumber field in IDCODE. Thus, DPIDR and
IDCODE can be the same or vary only slightly. As we determine later
(Section 3.7), this is the case on ThunderX.

• Control/Status register, CTRL/STAT, controls the operation of the

11

2. Background

Debug Port. Apart from response fields such as the Sticky error flag
mentioned in Section 2.3.1, CTRL/STAT sets the power mode of the
Debug Port, controls the system reset, and selects modes of operations
such as transaction counter mode TRNCNT. If the value of TRNCNT
is n, a single AP memory operation initiates (n+1) sequential memory
accesses starting from the address contained in the TAR register of the
Access Port. Note that the standard does not specify the default values
for some mode fields, such as transaction counter TRNCNT and the
transfer mode TRNMODE. They have to be set manually at the start of
the operation. Also, the debuggers have to configure the power domain
of the DAP right at the start of the operation (Section B2.3 of the ADI
specification [8]).

• AP Select Register, SELECT. As discussed in Section 2.3.1, despite its
name, SELECT also takes part in the DP register addressing for newer
versions of the Debug Port. In total, SELECT consists of three fields:
APSEL selects one of the Access Ports associated with the Debug Port,
APBANKSEL selects the register bank of the target for the next APACC
transaction, and DPBANKSEL builds part of the offset into the DP
register bank.

We omit the discussion of other DPv1 registers that are irrelevant for JTAG-DP
(DLPIDR) or that we never used (RDBUFF).

2.3.3 AP registers

We list registers implemented by MEM-AP. ThunderX does not have JTAG
Access Ports.

• Identification register, IDR. In addition to the designer identification,
it also indicates the class of the access port (JTAG-AP or MEM-AP). The
type field further divides MEM-APs according to their memory bus.

• Debug Base Address Register, BASE. The least significant bit indicates
whether the MEM-AP is connected to debug components. If so, the
BASE register points to the ROM table. If only one debug register is
mapped into the memory space of the MEM-AP, the ROM table is not
mandatory, and the BASE register can hold the address of the debug
register file.

• Configuration register, CFG indicates whether the Access Port supports
optional Large Data and Large Physical Address Extensions.

• Control/Status Word register, CSW, controls the operation of the Mem-
ory Access Port. For example, it can disable the AP, change the data
access size (if the Large Data Extension is implemented), or deny ac-
cess to the debug software. The reset value of some register fields

12

2.4. JTAG infrastructure on Enzian

is unknown. Similarly to CTRL/STAT, the debugger must manually
configure the CSW register before initiating memory operations.

• Transfer Address Register, TAR, contains the address of the AP mem-
ory access. To facilitate the Large Physical Address Extension, the
neighboring register that follows TAR in the register bank is reserved
for storing the 32 most significant bits of the 64-bit address. If the Large
Physical Address Extension is not present, the contents of that register
are ignored.

• Data Read/Write register, DRW. APACC’s access to this register initi-
ates writes/reads to the location specified in TAR.

Again, we do not include the discussion of other MEM-AP registers that we
do not use in our work. Figure 2.5 shows a complete register programming
model in the Debug Access Port, similar to how it is depicted on page 53 of
the CSAT manual [9].

2.3.4 ROM Tables and Debug register files

The debugger starts to reconstruct the topology of the debug infrastructure
by accessing the ROM table. The ROM table stores an array of addresses
that point to all debug register files in the memory space. To identify the
corresponding devices, there are Component and Peripheral Identification
Registers (CIDR and PIDR) at the end of each debug register file (and the
ROM table). The Class field of the CIDR stores the type of the file. For
example, 0x1 is allocated for the ROM table, while 0x9 indicates the Debug
component of the CoreSight architecture. The fields in PIDRs, similarly to
the IDCODE register in JTAG, contain information about the component’s
designer and its part number. The debug register files of CoreSight compo-
nents must contain additional registers that describe the part in more detail
(Section B2.3 in the CoreSight architecture specification [7]). For example,
the (MAJOR, MINOR) field pair of the Device Type Identification Register
(DEVTYPE) might be (0x5, 0x1) == (Debug Logic, Processor Core) or (0x4,
0x1) == (Debug Control, Trigger Matrix).

2.4 JTAG infrastructure on Enzian

The JTAG daisy chain on Enzian contains four devices: Marvell Cavium
ThunderX-1 CPU, Xilinx Virtex Ultrascale+ FPGA, the Baseboard Manage-
ment Controller, and the clock and data recovery device [20]. A pin header
is positioned between each device and the chain. A device is visible to the
rest of the chain (i.e., it is in the “connected mode”) when the jumpers are
configured to forward every JTAG signal to the TAP of the device. If, instead,
the jumpers directly join the TDI and TDO lines while leaving other pins

13

2. Background

Figure 2.5: DAP programming model

disconnected, the device operates in “bypass mode,” effectively rendering the
device absent from the chain. The chain itself is driven by the Surface-mount
Programming Module JTAG-SMT3-NC. The module is accessible from the
outside using a USB-B port.

Apart from this, all the devices are exposed to external JTAG controllers via
native JTAG headers. For example, the CPU header is compatible with the
14-pin ARM adapter. (the pinout is depicted in Section 3.11 of the ARM

14

2.5. DAP infrastructure on ThunderX

Figure 2.6: JTAG infrastructure on the Enzian board

DSTREAM System and Interface Design Reference [2].) Note that with this
approach, the jumper configuration of the device on the daisy chain must
be configured in a bypass position to prevent interference with the adapter
working through the JTAG header.

Figure 2.6 shows the relevant part of Enzian’s PCB.

2.5 DAP infrastructure on ThunderX

ThunderX features an ARM ADIv5-compliant debug infrastructure. The
DAP consists of a JTAG-Debug Port and two Access Ports. One is a standard
APB-AP that connects the DAP to the 32-bit debug address space. The space
contains the debug register files of the cores, their cross-trigger interfaces,
and their performance monitoring units. APB-AP shares the memory bus
with ThunderX’s cores. This way, the chip’s debug infrastructure can be
accessed internally and externally. Following the standard, the ROM table
describes the topology. The second Access Port (CVM-AP) is Cavium-specific.
It is allows external debuggers to access the system registers of each core.

15

Chapter 3

Implementation

The first half of this chapter details how we went about fixing the JTAG
access to ThunderX on Enzian. The section also includes our implementation
of the Nucleo board-based JTAG adapter. In the second half, we provide a
comprehensive guide to configuring and establishing a debug session with
ThunderX using the Open On-Chip Debugger (OpenOCD).

3.1 Fixing the JTAG issues with ThunderX

3.1.1 Replicating the Problem

As the first step, we replicated the problems that arise when a debugger
connects to ThunderX and gathered the associated logs. For this, we used a
debugging device for ARM-based targets called DSTREAM [4]. The central
part of the device is the debug adapter itself, the DSTREAM unit. It supports
direct (USB) and remote (TCP) connections from the host computer. A
separate DSTREAM probe connects the unit to the target. It features various
connector standards, among which there are three different JTAG interfaces.
We ensured that the CPU’s configuration jumpers on the Enzian’s daisy chain
were set into the bypass position and then connected an ARM JTAG 14 cable
from the DSTREAM probe to the CPU’s JTAG header. Furthermore, we
captured the signals on the oscilloscope. For this, we used the fact that ARM
JTAG 14 and the 20-pin ARM Standard JTAG are electrically connected on
the DSTREAM probe. So, we plugged the logic probes of the oscilloscope
into the 20-pin connector.

We tried connecting to the processor from ARM Development Studio (ARM
DS). We followed the steps described in the “Configuring a connection to a
bare-metal hardware target” section in the ARM Development Studio Getting
Started Guide [10]. We picked the “ThunderX-r2 AP0” option during the
target selection and the first core of ThunderX as our debug target (“Debug

16

3.1. Fixing the JTAG issues with ThunderX

Figure 3.1: Autodetection. The signals are D1:TCK, D1:TDI, D2:TMS, D3:TRST, D4:TDO (high-
lighted in red)

ThunderX-r2 00”). Finally, we had to configure the DSTREAM connection
by selecting JTAG as the transport protocol, setting the clock speed of the
DSTREAM unit, and passing its IP address. This setup results in the “No
connection to the target error” in ARM DS.

We also tested the autodetection (Section 12.7 in ARM development Studi Get-
ting Started Guide), which explores the topology of a debug target unknown
to ARM DS and automatically builds the associated platform configuration
file. To start the procedure, we must follow the same steps as for the hard-
ware debug connection, except that instead of the target selection, we use the
“Add a new platform. . . ” option.

From the start, DSTREAM failed the autodetection: According to the output
log on the PCE console (see Section A.1), it failed to enumerate the scan
chain both using JTAG and SWD protocols. It then tried to access the APIDR
register to identify the Access Ports on the DAP, but it was unsuccessful.

Furthermore, the TDO readings on the oscilloscope remained unchanged
throughout the test (Figure 3.1). The fact that ThunderX’s DAP remained
completely unresponsive leads us to believe there might be a problem with
the JTAG infrastructure on the Debug Port. To test this, we decided to replace
DSTREAM with the Platform Cable USB II, a low-level JTAG adapter that
allowed us to drive the state machine manually.

17

3. Implementation

3.1.2 Platform Cable USB II

The Platform Cable USB II [38] is a device primarily utilized for AMD FPGA
programming using SPI or JTAG protocols. It exposes parts of the JTAG
interface that are sufficient for basic JTAG debugging.

We can interact with Platform Cable USB II through the command line
interface of the Xilinx System Debugger (XSDB). The binary of the command
line tool is called xsdb. It is located in the binary directory of any Vivado or
Vitis installation. To make the devices accessible from XSDB, we must connect
them to the Xilinx Hardware server. Luckily, the Platforms Cables in the lab
were already visible to the server, and we could skip their configuration. We
now go through the relevant JTAG commands in xsdb. It is taken from the
XSDB reference manual [39]. We can connect to the Xilinx hardware server
and list all JTAG adapters visible to the debugger with connect and jtag

targets instructions. To select one of the adapters, we specify its index in
the list: jtag targets <index>.

Communication with the target controller proceeds in sequences of JTAG
operations. jtag sequence creates a new empty sequence and outputs its
name. We can add operations to the sequence by issuing JTAG commands
that cover most of the standard functionality. The sequence’s name must
precede every JTAG operation that we want to add. The names are usually
hard to type, so we can alias them using TCL syntax: set <alias name>

[jtag sequence]. We substitute the alias by prepending the ‘$‘ symbol:
$<alias name>. Throughout the rest of the section, we refer to the output of
jtag sequence as <sequence name>.

Valid JTAG commands that we can bind to the sequence include:

• <sequence name> state <name of the state> [count] controls the
TMS signal by navigating the TAP controller into the state passed in
the parameter.

• <sequence name> irshift/drshift [options] [bits [data]]

brings the state machine into the SHIFT-IR / SHIFT-DR state. The input
specified as a command parameter is shifted into the instruction/data
register. The input is represented either as constant logic 0 or 1 (-tdi
option) or as a bit sequence of an arbitrary length (-bits option) and
arbitrary contents in a binary (-binary), integer (-integer) or hexadecimal
(-hex) form. In the binary form, the leftmost bit is the first bit shifted
into the test data register. As for binary to hexadecimal conversion,
the manual states that “the first bit shifted out is the least significant
bit of the first byte of the in the string” [39], i.e., we divide the binary
sequence into bytes, then read each byte from right to left and transform
it into a hexadecimal number. E.g., 1101’0100’0101’1011 → 2B’DA. The
option -state <new state> sets the next state after the shift command

18

3.1. Fixing the JTAG issues with ThunderX

finishes the execution. The exact names of the states are listed in the
manual.

• <sequence name> delay [usec] halts the execution for a usec mi-
croseconds

• <sequence name> get pin <pin> and sequence set pin <pin>

<value> manually drive the JTAG signals. The manual states that sup-
port for these commands depends on the JTAG adapter. For example,
the JTAG port on the Platform Cable does not have the TRST pin. How-
ever, the tool forcibly closes the connection channel even if we try to
manipulate mandatory signals such as TDI or TDO.

• <sequence name> run executes the commands bound to the sequence.

• <sequence name> clear deletes all JTAG operations from the sequence.

The output is displayed in XSDB by supplying irshift/drshift instructions
with the -capture option. By default, it is in the hexadecimal form. We can
change it with -binary or -integer options for sequence run. XSDB also
uses the same binary to hexadecimal conversion in the case of the output. In
the binary form, the leftmost bit of the output string corresponds to the first
bit that comes out of the TAP.

The Platform Cable USB II can operate at different predefined frequencies
selected by jtag frequency command. jtag frequency -list prints the
frequency range supported by the adapter. For Platform Cable USB II, it goes
from 125KHz to 30MHZ.

Tests

In order to verify our understanding of the setup, we analyzed a known
working JTAG scan chain of another computer, from now on referred to
as schibenstoll02. Schibenstoll02 has Mercury XU5 system-on-chip [19]
integrated on the otherwise unpopulated Enizan’s PCB. The JTAG scan chain
on SoC includes the DAP and the Zynq Ultrascale+ TAP. The scan chain is
connected to the BMC’s JTAG line. We ensured that the BMC’s configuration
jumpers for the daisy chain were in the bypass mode and connected the
Platform Cable to the BMC’s JTAG pin header using the JTAG flying wire
adapter (Figure 3.2). This allowed us to capture the signals on the oscilloscope
by attaching the analog probes to the metallic hoops on the cable.

We started with reading the identification registers of the devices on the
scan chain (Listing 3.1). As mentioned in Section 2.1.4, it is the default
operation upon the reset. Thus, after we had navigated the state machine
into the RESET state (line 3), we could immediately start shifting the data
register without supplying any instructions (line 4). We decided to shift

19

3. Implementation

Figure 3.2: Platform Cable USB II connected to schibenstoll02

more than the necessary 64 bits (which corresponds to the size of the ID-
CODE test data register) to verify that the scan chain contains only two
devices. This is indeed confirmed by the fact that the output remains con-
stant 1 after 64 bits. If we reverse the first 32 bits of the output, we get the
IDCODE of the last device on the chain: 7704a05b → (XSDB conversion)
1110’1110’0010’0000’0000’01011’1011’0101 → 1010’1101’11010’0000’0000’0100’
0111’0111. The designer [11:1] and part number fields [27:12] identify it as an
ARM Debug Access Port [11]. Figure 3.3 shows the start of the procedure
captured on the oscilloscope. Four signals are displayed from top to bottom:
TDO, TDI, TMS, and TCK. For example, in the fourth horizontal division of
the TMS, we can see the bit sequence 0100 that navigates the state machine
from TEST-LOGIC-RESET into SHIFT-DR. After this, the TDO line contains
the two least significant bytes of the identification code: 1110’1110’0010’0000.
Note that the Platform Cable generates the clock signal in batches of 4.

Next, we determined the total instruction register length of the scan chain
(Listing 3.2). We employed the algorithm described in Section 2.1.4. It
leverages the general idea for the scan line width estimation. The algorithm
shifts 11...1011...1 into the instruction register and counts the number of clock
cycles for the bit 0 to appear on the output line. The delay corresponds to
the total length of the registers on the scan line. The output string starts
with the contents of the instruction register loaded in the CAPTURE-IR

20

3.1. Fixing the JTAG issues with ThunderX

1 xsdb% set seq [jtag sequence]

2 ::jtagseq#0

3 xsdb% $seq state RESET

4 xsdb% $seq drshift -capture -tdi 1 128

5 xsdb% $seq run

6 7704a05b93107204ffffffffffffffff

Listing 3.1: IDCODE read

Figure 3.3: IDCODE read Platform Cable, The signals are from top to bottom: TDO, TDI, TMS, TCK

state, followed by the input string. Bit 0 is at positions 17 and 33 of the
input and output strings, respectively. Thus, the total instruction register
length of the scan chain is 16. Note that although the 2 LSBs loaded into the
instruction register in CAPTURE-IR must be 01 (see Section 2.1.3), the rest
is implementation specific. So, in general, we cannot determine the register
length by recognizing some specific bit sequence on the output line. However,
in this case, the rule can help us to find the individual lengths. The DAP is
the last device on the chain, so its instruction register appears first on the
output line. Its length can only be 4 or 8-bit. If it were an 8-bit version of the
JTAG-DP, the second half of the output, 07 == 01110000 (XSDB’s hexadecimal
to binary conversion), would correspond to Zynq Ultrascale’s TAP, which
clearly cannot be the case. Thus, the ARM DAP and Zynq Ultrascale’s TAP
have 4-bit and 12-bit instruction registers, respectively.

Now, we could test the functionality of the instruction register (Listing 3.3).
Since Zynq UltraScale’s manual does not disclose the binary codes of the
instructions, the only one that we could test was BYPASS (0xFFF). On the

21

3. Implementation

1 xsdb% set seq [jtag sequence]

2 ::jtagseq#1

3 xsdb% $seq state RESET

4 xsdb% $seq irshift -capture -hex 64 fffffeffffffffff

5 xsdb% $seq run

6 5107fffffeffffff

Listing 3.2: Instruction length estimation

other hand, the binary codes of the ARM DAP are well documented. We
picked IDCODE 0b1110. Since ARM DAP is the last device on the chain, its
binary code has to be shifted in first (Line 3). With the instructions selected,
we navigated to the test data register and shifted in a long sequence of 1s
(Line 4). The result is 7704a05bfeffffff, which corresponds to the identification
number of the ARM DAP followed by input signal delayed by one bit 0. This
bit is loaded into the BYPASS register in CAPTURE-DR.

1 xsdb% set seq [jtag sequence]

2 ::jtagseq#1

3 xsdb% $seq irshift -state IDLE -hex 16 0xfeff

4 xsdb% $seq drshift -capture -tdi 1 64

5 xsdb% $seq run

6 7704a05bfeffffff

Listing 3.3: Manual selection of the instructions

As the last example, we want to showcase how to embed the XSDB commands
in TCL scripts, which can greatly increase the complexity of the tests. This
way, we were able to determine the binary code of the IDCODE instruction in
Zynq Ultrascale’s TAP controller. The central part of the script, the for loop,
is shown in the Listing 3.4. It stores the first 64 output bits for every possible
instruction register value of the TAP controller while keeping the IDCODE
instruction for the ARM DAP. We can deduce the binary code of IDCODE
by searching the output file (Listing 3.5) for the identification number we
determined earlier. Interestingly, four different binary codes trigger the ID-
CODE command. Moreover, this script can be easily modified to implement
the length-scan test for the reverse engineering of JTAG instructions [18].

Convinced that we can successfully drive the Platform Cable, we attached
it to the CPU’s JTAG header on Enzian. We started with the same simple
tests we had previously run on schibenstoll02: shifting out the contents of
the instruction register, its width estimation, IDCODE, and BYPASS com-
mands. Unfortunately, none of them worked. The TDO line always remained
constant.

We wondered whether the problem was with the Platform Cable itself. In

22

3.1. Fixing the JTAG issues with ThunderX

1 for {set i 0} {$i < 65536} {incr i} {

2 puts $fp "------\nrunning sequence $i"
3 set irsequence "0111[hexToBinary [format "%03x" $i]]"
4 puts $fp "shifting irsequence: $irsequence"
5 puts $irsequence
6 set seq [jtag sequence]

7 $seq state RESET

8 $seq irshift -capture -state IDLE -bits 16 $irsequence
9 $seq drshift -capture -tdi 1 64

10 set ans [$seq run]

11 puts $fp $ans
12 $seq clear

13 }

Listing 3.4: Intstruction register space enumeration

1 running sequence 0

2 shifting irsequence: 0111000000000000

3 1105 7704a05bfcffffff

4 . . .

5 running sequence 612

6 shifting irsequence: 0111001001100100

7 1105 7704a05b93107204

Listing 3.5: The output file of the script

particular, we did not know if the missing TRST line was essential or whether
the unusual way the adapter drove the clock signal influenced the working
of the DAP, as this behavior is not mentioned in the JTAG standard. Ad-
ditionally, we did not completely control the execution of Platform Cable.
For example, we could not control the exact pathing of the TAP controller
through the state machine. If we wanted to see the exact state transitions, we
had to hard code them in our scripts with the state command or inspect
the TMS signal on the oscilloscope. It was cumbersome to capture the signal
sequences on the oscilloscope, especially for long sequences, due to the high
operating frequency of the adapter. To mitigate these issues, we developed
our own JTAG adapter, which gives us complete control over the execution
environment. For this task, we selected an STM32 Nucleo board.

3.1.3 STM32 Nucleo board

The STM32 Nucleo are development boards that feature an ARM Cortex-M
32-bit microcontroller along with an STLINK debugger/programmer adapter
and various other peripherals. For debugging and programming, STLINK
is connected to a computer via a USB port. In turn, STLINK and MCU

23

3. Implementation

are connected via SWD and UART buses. The former is used to flash the
programs and control the code execution from the host computer. While
the latter provides an interface for program I/O. The Nucleo boards vary
in flash memory size and core speed. We used STM32 Nucleo-G071RB [33].
The microcontroller on the Nucleo board is STM32G071RB, accessible from
the outside via the STLINK/V2-1 debugger adapter.

The DirtyJTAG [17] project provides JTAG adapter firmware for STM32
development boards. It relies on host computer software to control the
adapter, similar to how XSDB and the Platform Cable USB II operate. Since
we wanted to avoid this, we decided to implement our JTAG adapter from
scratch.

We programmed the microcontroller in STM32CubeIDE [35], which is part of
the STM32Cube software system [34]. The system was created to simplify
the development of applications for the STM32 microcontrollers. Apart from
IDE, it provides firmware libraries that implement high-level interfaces for
accessing onboard peripherals. We used the Hardware Abstraction Layer
library (HAL) [31] to interact with the GPIO pins (e.g., HAL GPIO ReadPin and
HAL GPIO WritePin calls). STM32Cube also comes with STM32CubeMX [36],
a configuration tool for hardware peripherals that automatically generates ini-
tialization functions for microcontroller components running at the beginning
of the program.

We aimed to implement the most basic JTAG adapter, and thus we focused
only on the necessary parts of the standard. According to the JTAG specifi-
cation [24], four signals constitute the minimal requirements of a working
JTAG probe: TCK, TDI, TDO, TMS:

• TCK: The clock signal is generated on the GPIO pin using the Pulse
Width Modulation mode on the first channel of the 16-bit general-
purpose timer TIM3 with the internal clock as a clock source running
at 16MHz. We used the default parameters set by the IDE during
the project creation, only adjusting the pulse of the PWM to half of
the period counter such that the duty cycle of TCK remains at 50%.
Figure 3.4 shows this setup in STM32CubeMX. The resulting clock
speed of TCK is 16MHz/65535 = 244Hz.

• TDI & TMS: We decided to implement the simplest form of the JTAG
controller, which was completely static and did not interact with the
user during the program execution. Thus, it was sufficient to store
the input TDI and the control TMS signal sequences we wanted to
supply to the test logic as static byte arrays and recompile the program
for each test. We wrote the sequences by hand as bit strings. Python
script (generated with the help of ChatGPT 4.0) then transformed the
sequences into arrays and pasted them into the code. However, in

24

3.1. Fixing the JTAG issues with ThunderX

Figure 3.4: PWM configuration

the end, we have also implemented a more dynamic alternative that
asks the user to supply signals through the UART console. After the
microcontroller finishes executing the sequences, it resets the state
machine and waits for the next test.

• TDO: Initially, we avoided any processing of the TDO signal: we could
easily capture TDO on the oscilloscope and inspect it manually. It
was possible to do so due to the low frequency of the JTAG controller
(244Hz) and easily recognizable form of output for our simple test cases
(known in advance bit sequence for IDCODE test and simple periodic
signal for BYPASS). Ultimately, we opted to store the TDO bits in the
static array the same way as we did for the input signals and output
the result on the UART console.

We decided not to implement active triggering of TRST since we did not
program any dynamic events in the microcontroller, and the state machine
had built-in synchronous reset functionality. Instead, we assigned a GPIO
pin that supplied logic 1 to the TRST line on the header to ensure the TAP

25

3. Implementation

controller did not stay in the reset state.

We mapped the signals onto GPIO pins as follows: TCK:PA6, TDI:PA7,
TMS:PB0, TDO:PC7, TRST:PA8. However, this can be easily adjusted in
CubeMX.

We discuss in more detail the implementation of the static version of our
program that does not rely on UART for input. Its main part (Listing 3.6)
is the for loop, where the microcontroller alternatingly polls on the rising
and falling edges of the clock TCK. On the falling edge, it updates the input
signals TDI and TMS for the next clock cycle (lines 7-10). On the rising edge,
it samples TDO as it is supposed to be stable at this point (lines 12-15). (the
output of the test logic for the clock cycle happens on the falling edge.) When
the Nucleo board finishes going through the input, it resets the state machine
by driving TMS to 1 (lines 19-22) and prints the captured output signal in
the binary and hexadecimal forms on the UART console. (One can open
the UART console in STM32CubeIDE [32].) To print the formatted output
using the C standard library function printf(), we modified the write()

system call in syscall.c that sends the data onto the UART console using
the HAL UART Transmit command (Section 2.2.2.1 of the STM32CubeIDE
manual [35]).

1 HAL_Delay(3000);

2 . . .

3 for (int i = 0; i<message_len; i++){

4 command_bit = command_sequence1[i];

5 data_bit = data_sequence1[i];

6 //change tdi & tms on the falling edge

7 while(HAL_GPIO_ReadPin(TCK_GPIO_Port, TCK_Pin)

8 == GPIO_PIN_SET){}

9 HAL_GPIO_WritePin(TSM_GPIO_Port, TSM_Pin, command_bit);

10 HAL_GPIO_WritePin(TDI_GPIO_Port, TDI_Pin, data_bit);

11 //sampling happens on the rising edge

12 while(HAL_GPIO_ReadPin(TCK_GPIO_Port, TCK_Pin)

13 == GPIO_PIN_RESET){}

14 output_sequence[i]

15 = HAL_GPIO_ReadPin(TDO_GPIO_Port, TDO_Pin);

16 . . .

17 }

18 //restore the default signal values

19 while(HAL_GPIO_ReadPin(TCK_GPIO_Port, TCK_Pin)

20 == GPIO_PIN_SET){}

21 HAL_GPIO_WritePin(TSM_GPIO_Port, TSM_Pin, 1);

22 HAL_GPIO_WritePin(TDI_GPIO_Port, TDI_Pin, 0);

23 . . .

24 while (1) {}

Listing 3.6: Main microcontroller loop

26

3.1. Fixing the JTAG issues with ThunderX

Figure 3.5: Nucleo board connected to schibenstoll02

Note that the JTAG controller would only work if we made a long delay at
the start of the execution (line 1), where the TMS signal still had its default
value of 1, setting the state machine into Test-Logic-Reset. Simply putting a
long sequence of 1s at the beginning of the TMS array did not work.

To test our program, we replicated the scripts we ran on the Platform Cable.
We tried to connect the pins TDI, TDO, TCK, and TMS to schibenstoll02 using
jump wires. The sockets of the jump wires were too thick for the BMC’s
connector. Our solution was to remove the sockets, isolate the exposed wires,
and plug them into the Flying wire cable. The cable forwarded the signals to
the BMC’s connector. We decided not to supply TRST since it was not used by
the Platform Cable. The pin headers on the Nucleo board are double-sided,
so we were able to simultaneously plug the jump wires and the logic probes
of the oscilloscope. (Figure 3.5)

Figure 3.6 displays the output of the IDCODE read test as it appears on the
UART console. (I) and (IV) hold TMS high for five clock cycles to reset the
test logic at the beginning and end of the test. We immediately navigate the
state machine from TEST-LOGIC-RESET to SHIFT-DR (II). (III) shifts out 32
bits of the instruction register by looping the state machine in the SHIFT-DR
state. The last bit is shifted out during the transition to Exit1-DR. Thus, the
last bit in the TMS part of (III) is 1. The contents of the data register appear

27

3. Implementation

TDI: 00000 0000 00000000000000000000000000000000 00000
TDO: 11111 1111 11101110001000000000010111011010 11111
TMS: 11111 0100 00000000000000000000000000000001 11111

︸ ︷︷ ︸
I

︸︷︷︸
II

︸ ︷︷ ︸
III

︸ ︷︷ ︸
IV

Figure 3.6: IDCODE read

TDI: 00000 00000 111111111111111101111111111111111 00000
TDO: 11111 11111 100010101110000011111111111111110 11111
TMS: 11111 01100 000000000000000000000000000000001 11111

︸ ︷︷ ︸
I

︸ ︷︷ ︸
II

︸ ︷︷ ︸
III

︸ ︷︷ ︸
IV

Figure 3.7: Register length estimation

on the scan line least significant bit first. We get the same IDCODE value
of the ARM DAP 11101110001000000000010111011010 → 7704a05b (XSDB
conversion binary to hex conversion) as in Listing 3.1.

Next, we repeated the instruction register width test (Figure 3.7) by navigating
into SHIFT-IR (II) and shifting in the sequence 11...1011...1 (III). We got the
same offset of bit 0, confirming the instruction register width of 16.

In Listing 3.4, we determined the IDCODE binary for Zynq Ultrascale’s TAP
controller. We use that in Figure 3.8, where we tested the functionality of the
instruction register. (We omit the reset sequences here to save space.) We
navigated the state machine from TEST-LOGIC-RESET to SHIFT-IR (I), shifted
in BYPASS for ARM DAP and IDCODE for the FPGA (II), and moved from
CAPTURE-IR to SHIFT-DR (III). Similarly to Listing 3.3, the identification
number of the FPGA appeared on the output delayed by one clock cycle due
to the BYPASS test data register of the ARM DAP.

Convinced that we had a working implementation of the JTAG controller,
we connected it to the CPU’s TAP on Enzian. We repeated all the tests
that we ran on the Platform Cable. However, this time, we tried different
paths through the state machine (e.g., the ones that went through or avoided
the IDLE state). We also tested different frequencies and duty cycles by
adjusting the corresponding factors in the Pulse Width Modulation settings in
STM32CubeMX. Nothing changed; the TDO line remained high throughout
all the tests.

28

3.1. Fixing the JTAG issues with ThunderX

TDI: 00000 1111001001100100 0000 000000000000000000000000000000000
TDO: 01100 1000100010100000 1111 011001001000010000100111000100000
TMS: 11111 0000000000000001 1100 000000000000000000000000000000001

︸ ︷︷ ︸
I

︸ ︷︷ ︸
II

︸︷︷︸
III

︸ ︷︷ ︸
IV

Figure 3.8: Explicit BYPASS and IDCODE

3.1.4 Solution

The fact that the DAP stayed completely unresponsive throughout all the tests
led us to believe that the TAP controller was stuck in the reset. This indeed
turned out to be the case. Upon inspection of the board schematics [20] (page
117 of the mainboard document), we noticed that a pin header separates the
TRST signal of the CPU’s JTAG header from the TRST line of the Test Access
Ports. In Figure 2.6, this 6-pin connector is to the left of the CPU’s JTAG
connector. If disconnected, the TRST lines to the TAPs are set to logic 0 by
pull-down resistors, thus keeping the TAP controller in the reset state. This
explains why ThunderX’s TAP stayed completely unresponsive for Platform
Cable USB II and STM32 JTAG controller tests. This behavior violates rule
4.6.1b) of the JTAG standard, which states that “the design of the circuitry
fed from that input shall be such that an undriven TRST* input produces a
logical response identical to the application of a logic 1.” [24]. After we had
forwarded the incoming TRST to the reset line of the DAP, we pulled the
state machine out of the reset state. When we repeated the steps described
in Section 3.1.1, the autodetection created a valid platform configuration
file, and we could connect to ThunderX from the ARM Development Studio.
All the conventional debug functionality was present: we were able to halt
the processor, step through the code, disassemble the code, and explore the
contents of the system registers. (Figure 3.9)

3.1.5 Further problems with the Autodetection

Although the autodetection was successful enough to create a valid platform
configuration file, some parts of the procedure still failed, namely, the scan
chain enumeration and the exploration of the second Access Port (lines 10
and 39 in the session log A.2). ARM documentation lists the autodetection
steps and provides their brief decription [6, 27].

For the scan chain enumeration, ARM DS employs a BYPASS algorithm
similar to the one described in Section 2.1.4. ARM DS brings each TAP
controller into a BYPASS mode and shifts in a long sequence of 1s. The
number of bits 0 that appear on the output line corresponds to the device

29

3. Implementation

Figure 3.9: Debug connection to ThunderX

count. This procedure happens right at the beginning of the autodetection,
so we confirmed it by analyzing the signal sequences on the oscilloscope.
The TDO line indeed remained at level 1 throughout the shift phase of the
test data register. One potential cause of faulty autodetection is the rest
signal [27]. However, in our case, the TAP controller clearly left the reset
state throughout the execution. For example, during the SHIFT-IR stage, the
TDO line contained the bit sequence 0b1000, i.e., the test logic successfully
shifted out the default contents of the instruction register.

Another possibility is the faulty implementation of the bypass mode [6]. We
wanted to investigate the BYPASS command on ThunderX’s DAP further
using our custom JTAG controller. We connected the 5 JTAG signals (TDI,
TDO, TMS, TCK, and TRST) mapped to the pins of the Nucleo board to the
ThunderX’s ARM JTAG 14 port. We also ensured that the jumper forwarded
the reset signal to the DAP and that the CPU’s configuration jumpers on the
daisy chain were configured for bypass mode. The signal sequence shown
in Figure 3.10 reruns the BYPASS test and fails to identify the device on the
scan chain. Our hypothesis is that the TDI signal is scanned into the BYPASS
test data register before the TAP controller enters SHIFT-DR. Given that the
register width is one, the first bit that appears on the output line when we
start shifting is not the default content of the test data register (i.e., bit 0).
Instead, it is the value on the TDI line from the previous clock cycle when
the state machine was in CAPTURE-DR. Our claim is further supported by

30

3.1. Fixing the JTAG issues with ThunderX

TDI: 11111 11111 1111 1111 111111111111111111111111111111
TDO: 11111 11111 1000 1111 111111111111111111111111111111
TMS: 11111 01100 0001 1100 000000000000000000000000000001

Figure 3.10: Enzian, BYPASS test 1

TDI: 11111 11111 1111 0001 00000000000
TDO: 11111 11111 1000 1111 10000000000
TMS: 11111 01100 0001 1100 00000000001

Figure 3.11: Enzian, BYPASS test 2

TDI: 11111 11111 1111 1110 11111111111
TDO: 11111 11111 1000 1111 01111111111
TMS: 11111 01100 0001 1100 00000000001

Figure 3.12: Enzian, BYPASS test 3

the BYPASS tests in Figures 3.11 and 3.12. The shifted bit is highlighted in
bold. This is a clear violation of the JTAG standard, which stipulates that test
logic should propagate data along the scan chain only on the rising edge of
TCK when the TAP controller is in the SHIFT state. For example, if we repeat
the test in Figure 3.11 on the functioning scan chain used in Section 3.1.2, the
highlighted bit 1 never appears on the output line. Nevertheless, the failure
of the enumeration does not influence the rest of the autodetection. ARM DS
behaves as if there is only one DAP on the chain. However, such message
explicitly appears only in the faulty autodetection log (Line 22 in A.1) and
not in the working one (A.2).

The second failure occurs due to an unsuccessful memory read through the
second Access Port in the DAP. We wanted to further investigate the faulty
Access Port and the DAP in general. Since both Platform Cable USB II and
our STM32 adapter operated on the level of the JTAG protocol, we needed a
tool that specifically worked with the DAP.

3.1.6 CoreSight Access Tool

The CoreSight Access Tool (CSAT) [9] is a command-line software designed
to test CoreSight systems connected via DSTREAM. Since CSAT interacts

31

3. Implementation

1 %>connect TCP:dstream1.ethz.ch

2 Attempting to connect to TCP:dstream1.ethz.ch

3 Connected to:DSTREAM

4 . . .

5 %>chain dev=auto clk=20000

6 Jtag clock set to 20000

7 ID:0 ARMCS-DP

8 %>devopen 0

9 Open connection to device ID :

10 0x1A101399, version 0x00000006

11 Msr returned with RVMOpenConn: ARM-DP Template using Rv-Msg

12 %>dapenum

13 Enumerated 2 APs

14 0 : APB-AP

15 1 : APB-AP

Listing 3.7: CSAT connection

with CoreSight infrastructure, its interface operates at the level of the DAP
protocol, abstracting away underlying JTAG communication. Its byte level
reads and writes to the address space of the CoreSight DAP, making it a
valuable tool for manual exploration of a DAP. Apart from debugging, CSAT
also exposes to the user an extensive tracing interface of DSTREAM. It is
shipped with ARM Development Studio. The executable is in the binary
directory of an ARM DS installation.

The following steps describe the way to establish a connection to a DAP that
is interfaced with the DSTREAM probe:

1. Connect to DSTREAM either via TCP (connect TCP:<IP address>) or
USB (connect USB)

2. Directly specify the devices on the chain (chain dev=ARCMS-DP

clk=10000000) or use the auto-detect option (chain dev=auto clk=A)
to get the list of the devices.

3. Select one of the DAPs on the chain with the device open instruction
(devopen 0 selects the first device in the list)

4. (Optional) Enumerate the Access Ports (APs) of the DAP (dapenum)

Listing 3.7 shows the result of the commands for ThunderX’s DAP. We opted
to use the slowest possible frequency for the auto-detect because, otherwise,
CSAT often fails. On the other hand, the manual setup of the scan chain
works without a problem. We tested it up to 1MHZ. CSAT correctly detects
the single Debug Port on the scan chain and two associated Access Ports.

CSAT supports two types of I/O operations:

32

3.1. Fixing the JTAG issues with ThunderX

• Read/Write to Debug Port (DP) and Access Port (AP) registers con-
figure the ports and run the DAP protocol. The operations are of
the form dregread <port type>.<register> and dregwrite <port

type>.<register name/offset> value where the <port type> is ei-
ther dp or ap and the <register> is a register name (e.g., csw for
control status word register) or a numerical register offset.

• Read/Writes to the DAP memory space. The operations are of the form
dpmemread <ap number> L|l:<address>[.b|B|h|H|l|L] <no.items>

and dpmemwrite <ap number> L|l:<address>[.b|B|h|H|l|L] <data>

[<data>]*. <ap number> is an index into the list of Access Ports pro-
vided by dapenum instruction, the <address> is by default 32-bit or
64-bit if the optional argument L: is present. Both instructions can
initiate multiple sequential memory accesses. For the read operation,
<no.items> specifies the number of accesses, while for write opera-
tions, the data to be written is provided as a sequence at the end of the
instruction.

Using CSAT, we can fully configure DP and AP registers and inspect the
memory:

• Reading the Debug Port Identification Register DPIDR

1 %>drr dp.0 #CSAT does not provide a name for the DPIDR. We

have to use numerical offset

2 dp.0 => 0x0A111399

0x1 in the version field [15:12] of the identification register means that
the DAP implements DPv1. Note that DPIDR 0x0A111399 and IDCODE
0x1a101399 of ThunderX’s DAP (that we determine later in Section
3.2.1) are the same up to version fields [31:28] and the MIN bit [16] in
DPIDR.

• Reading the Access Port Identification register ID

1 # select the first Access Port by writing index 0 to the

APSEL field of the AP select register. Also select the

last register bank on the AP (0xF in the APBANKSEL field)

2 %>drw dp.addr 0x000000F0

3 %>drr ap.3 # Read the contents of the last register in the

bank.

4 ap.3 => 0x03990003

The 4 least significant bits of the instruction register that identify the
memory bus the Access Port connects to contain a reserved entry 0x3
that does not correspond to any standard AP. Thus, the autodetection
tools may fail to determine the bus type of ThunderX’s APs (we en-

33

3. Implementation

counter it later in Section 4.2.2). IDR of the second AP 0x03990013
differs only in the variant field, so the manufacturer could differentiate
between APB and CVM Access Ports in ThunderX.

• ThunderX provides access to system registers on the processor’s cores
via a Cavium-specific access port. The most recent version of the
manual [13] states that to start the transaction, one must configure the
Debug Address Register (DAR) according to the format in Table 21-2.
The DAR is not mentioned anywhere else in the manual; we assumed
it is the same as the Transfer Address Register (TAR) of the DAP in
ARM’s terminology. The address format includes the core number and
the opcodes of the system registers listed in Table 2-17 of the manual.
Unfortunately, when we tried to read the AP MIDR EL1 register of the
fifth core, the memory reads through the first and second Access Ports
failed (dmr 0 0x00450000 0 and dmr 1 0x00450000 0).

On the other hand, according to the older version of the manual [12],
one can access the system registers through the CVM-AP by sim-
ply supplying their I/O physical address. This approach worked.
For example, we were able to read NIC Receive Ethertype Register
NIC PF RX ETYPE by direct memory access through CVM-AP. Its ad-
dress is on page 773, and the contents are on page 785 of ThunderX’s
manual [13]. The example also confirms that the CVM-AP is the second
Access Port in the DAP.

1 # APB-AP

2 %>dmr 0 L:0x843000000500 1

3 0x00000500 : 0x00000000

1 # CVM-AP

2 >dmr 1 L:0x843000000500 1

3 0x00000500 : 0x00148100

• CSAT does not have a separate instruction that displays ROM tables. It
has to be done via a manual read. The first two entries of the APB-AP
ROM’s table point to the debug register file of the first core in ThunderX
and the cross-trigger interface file. (cf. Lines 28 and 32 in A.2)

1 %>dmr 0 0x80000000 4

2 0x80000000 : 0x88000003 0x88010003 0x88020003 0x88080003

3.2 OpenOCD

3.2.1 Motivation for OpenOCD

After correctly forwarding the TRST signal to ThunderX’s DAP, we success-
fully established the debug session from the ARM Development Studio using
DSTREAM. The major downside of this solution is that it requires physical

34

3.2. OpenOCD

access to the machine. It is impractical for most of Enzian users because
they connect to the machines remotely. Furthermore, it caps the number of
simultaneous debug sessions based on available DSTREAMs.

The onboard programming module JTAG-SMT3-NC [15] mentioned in Sec-
tion 2.4 could remedy these issues. Currently, it operates on Enzian as a
programming module for the FPGA with the other devices on the daisy chain
setup in the bypass mode. The module is accessed through the Xilinx soft-
ware such as Vivado or XSDB. If we make the CPU visible on the daisy chain
by setting the jumpers in normal mode, the chain becomes unresponsive and
keeps the output line at logic 1 (Listing 3.8).

1 xsdb% jtag targets

2

3 7 Digilent JTAG-SMT3 210357A7CB8FA (error DR shift output all ones)

4

Listing 3.8: jtag targets with TRST unset

This is because JTAG-SMT3-NC does not supply the TRST signal to the
daisy chain (page 118 of the mainboard schematics [20]), so we face the
same problem we had with the DSTREAM unit. To fix this, we connect the
reference voltage from pin 13 of the CPU’s ARM JTAG 14 connector to the
TRST pin 3. Also, we make sure that the jumper forwards the incoming
TRST signal from the CPU’s JTAG header to the DAP. Now, ThunderX’s
DAP appears on the jtag targets list of XSDB (Lines 3-5 in Listing 3.9).
Unfortunately, XSDB fails to recognize the TAP model and does not identify it
as a DAP (Line 8). As we discussed in Section 3.1.6, this is because ThunderX
features a DAP with a non-standard IDCODE. Note that XSDB successfully
identifies the DAP on the other computer visible to the hardware server (Line
10) since it has a standard identification number 4ba00477 [11]. The Xilinx
software lacks ways to assign the correct device identity manually. Thus, we
had to turn to other alternatives.

1 xsdb% jtag targets

2

3 7 Digilent JTAG-SMT3 210357A7CB8FA

4 8 unknown (idcode 1a101399 irlen 4)

5 61 xcvu9p (idcode 14b31093 irlen 18 fpga)

6 9 Digilent JTAG-SMT3 210357A7CF8CA

7 10 arm_dap (idcode 4ba00477 irlen 4)

8 11 xc7z015 (idcode 0373b093 irlen 6 fpga)

9

Listing 3.9: jtag targets with TRST set

35

3. Implementation

3.2.2 Brief Overview

The Open On-Chip Debugger (OpenOCD) is a software for debugging, flash
programming, and boundary-scan testing of embedded systems. Initially
created by Dominic Rath as part of his diploma thesis [30], it has since
become a fully-fledged open-source project [28].

We now give a brief overview of the tool as it is described in the User’s
Guide [29]. Thanks to its extensive configuration options, OpenOCD is
a highly versatile tool. It provides drivers for dozens of debug adapters
that employ different transport protocols (JTAG, SWD, SPI) and supports
a wide range of debug targets, from 8-bit STM8 microcontrollers to 64-bit
ARM CPUs. We worked with the most recent version of OpenOCD (0.12.0)
compiled from the source. OpenOCD operates in two stages: configuration
and execution. During the execution stage, OpenOCD starts up the server.
Clients can communicate with the server via telnet or by attaching gdb. The
stages are divided by the init command in the configuration file. After this
command, the file may contain server related instructions.

OpenOCD is written in C, but the configuration is done in TCL. The configu-
ration is modular. By convention, the adapter (called interface) and the target
are configured as separate TCL scripts, which can later be sourced in a single
board file. The scripting is mostly linear, but we can register event handlers
for predefined events to deal with any asynchrony. Valid events include gdb
connection (gdb-attach), halting of a target (halted), assertion of the system
reset SRST (reset-assert), and many more.

In the interface file, we usually select one of the adapter drivers that come
with OpenOCD and specify which optional JTAG reset signals are imple-
mented by the adapter. However, sometimes, device identification and further
configuration may be needed. This was the case with the JTAG controller on
Enzian.

The target configuration is more involved. It requires explicit enumeration
of all visible TAPs on the scan chain and the associated DAPs. Also, each
CPU core has to be declared separately. If the configuration is successful, one
can issue various generic and microarchitecture-specific commands. Most
of the former are memory and register accesses, while the latter vary wildly
depending on the architecture. They include ARM Cross-Trigger Interface
configuration, instruction disassembly, cache inspection, and trace collection.

3.2.3 Simple setup

First, we show how to set up a simple connection. We demonstrate it on the
STM32 Nucleo-G071RB. openocd command starts up the server. If no argu-
ment is supplied, the program looks for the configuration file openocd.cfg

in the current working directory. OpenOCD is shipped with a script library

36

3.2. OpenOCD

for dozens of adapters and debug targets. If we can use one of the files,
we can skip the setup process by referencing the configuration file in the
command: openocd -f <file name>.

The MCU on STM32 Nucleo-G071RB is STM32G071RB, accessible from
the outside via the STLINK/V2-1 debugger adapter. OpenOCD of ver-
sion 0.12.0 has configuration files for the microcontroller and adapter. The
files are located in the interface and target directories of the script library.
They are sourced in a single board configuration st nucleo g0.cfg. Thus
openocd -f board/st nucleo g0.cfg successfully connects to the Nulcleo
board, and we can attach the cross-platform gdb from the gdb-multiarch

package running on the x86 Ubuntu host. Another option would be to use
the gdb-arm-none-eabi version of gdb, built specifically for ARM targets.
As we can see in A.5, the gdb successfully attaches to the microcontroller, and
we can control its execution with the conventional debugging functionality.

3.2.4 Interface file for the onboard adapter

Although JTAG-SMT3-NC does not have a configuration file, previous gen-
erations of the module do. First, we studied the configuration file of the
direct predecessor JTAG-SMT2-NC [16] and subsequently adjusted it for
compatibility with JTAG-SMT3-NC.

JTAG-SMT2-NC The core of JTAG-SMT2-NC is FTDI FT232HQ.1 FT232HQ is
a Single Channel Hi-Speed USB to Multipurpose UART/FIFO converter [22].
FTDI’s Multi-Protocol synchronous Serial Engine (MPSSE) interfaces different
types of synchronous serial devices (SPI, I2C, JTAG, SWD) to a USB port [21].
JTAG-SMT2-NC schematics are not publicly available. However, we assume
that when MPSSE operates in JTAG mode, FT232HQ converts data from
OpenOCD into signals conforming to the JTAG protocol. These signals
are, in turn, forwarded to the output pins of JTAG-SMT2-NC. OpenOCD
implements a driver for FTDI chips that utilize MPSSE. JTAG-SMT2-NC’s
file uses that driver to configure the adapter:

1 adapter driver ftdi

2 ftdi device_desc "Digilent USB Device"

3 ftdi vid_pid 0x0403 0x6014

4 ftdi channel 0

5 ftdi layout_init 0x00e8 0x60eb

6 reset_config none

Listing 3.10: Interface configuration file for JTAG-SMT2-NC

1The reference manual does not state it directly. We can determine the converter’s name
from the picture of JTAG-SMT2-NC on page 9 of the reference manual [16].

37

3. Implementation

The adapter’s name, its vendor and product IDs are specified in (2) & (3). It
serves as a sanity check to confirm that the program connects to the correct
adapter. (4) selects the channel of the FTDI chip for MPSSE operations (note
that FT232HQ is a single-channel device). (6) states that the adapter supports
neither TRST nor SRST signals. The first hexadecimal number in (5) specifies
the initial values of the 8-bit register banks of the channel. The eight least
significant bits correspond to the low bank pins ADBUS0-7; the rest are the
high bank pins ACBUS0-7. The pinout diagram of the converter is depicted
on page 4 of the datasheet [22]. The second number sets the direction of
the pins. Logic 1 and 0 correspond to output and input, respectively (in the
point of view of the module.) According to Section 3.5.5 “FT232H Pins used
in an MPSSE” of the datasheet [22], in the JTAG mode, pins 13, 14, 15, and
16 (i.e. pins ADBUS0-3) contain four standard JTAG signals. They are, in
turn, forwarded to TCK, TDI, TDO, and TMS output pins of JTAG-SMT3-
NC [26]. For unknown reasons, JTAG-SMT2-NC duplicates the directional
settings of FTDI pins. Output enable pins OETMS, OETDI, and OETCK
connected to ADBUS5-7 must be driven to 1 for TMS, TDI, and TCK pins of
JTAG-SMT3-NC to become outputs.

From the above, we deduce the least significant bits of ftdi layout init param-
eters: The default value 11101000 or 0xe8 in [ADBUS7:0] occurs in 0x00e8
if we replace the irrelevant values with 0. Similarly for the direction value,
11101011 or 0xeb appears in 0x60eb (Table 3.1). Because we do not know how
JTAG-SMT2-NC uses the high bank pins (ACBUS0-7), we cannot explain the
corresponding default settings, especially logic 1 direction pins for ACBUS5
& 6 in 0x60eb.

JTAG-SMT3-NC follows the same structure as its predecessor, with an
embedded FTDI FT2232HQ module acting as a protocol converter.2 Although
FT2232HQ is dual channel, all the relevant JTAG signals are mapped to
channel 1 (see Section 3.1.4.5 “FT2232H pins used in an MPSSE” of the
reference manual [23]). Furthermore, JTAG-SMT3-NC removed unnecessary
directional pins leaving a single JTAG enable pin [25]. Thus, similarly to the
previous case, we can derive the initialization values for the ftdi driver:

Again, we substitute the irrelevant values with 0 and get the following least
significant bits of the configuration: default value 10001000 or 0x88, direction
value 10001011 or 0x1b. The pinout mapping also contains support for a
system reset signal. The pins are mapped to the high GPIO register ACBUS
of the first channel. In particular, the SRST line is mapped to ACBUS5 and
OESRST to ACBUS4. We decided to not enable the system reset functionality
as it simplified the configuration.

2See the picture of the module on page 1 of the reference manual [15].

38

3.2. OpenOCD

FTDI Pin JTAG-SMT2-NC Pin Default Value Direction Value
ADBUS0 TCK 0 1
ADBUS1 TDI 0 1
ADBUS2 TDO 0 0
ADBUS3 TMS 1 1
ADBUS4 unknown irrelevant irrelevant
ADBUS5 OETMS 1 1
ADBUS6 OETDI 1 1
ADBUS7 OETCK 1 1

Table 3.1: FTDI to JTAG-SMT2-NC Pin Mapping

FTDI Pin JTAG-SMT3-NC Pin Default Value Direction Value
ADBUS0 TCK 0 1
ADBUS1 TDI 0 1
ADBUS2 TDO 0 0
ADBUS3 TMS 1 1
ADBUS4 unknown irrelevant irrelevant
ADBUS5 unknown irrelevant irrelevant
ADBUS6 unknown irrelevant irrelevant
ADBUS7 OEJTAG 1 1

Table 3.2: FTDI to JTAG-SMT3NC Pin Mapping

1 adapter driver ftdi

2 ftdi device_desc

3 ftdi vid_pid 0x0403 0x6010 # Device descriptors are obtained

4 # via lsusb -v

5 ftdi channel 0

6 ftdi layout_init 0x0088 x008b

7 reset_config none

Listing 3.11: Interface configuration file for JTAG-SMT3-NC

As the last step of the adapter setup, we added non-root access permissions
to JTAG-SMT3-NC so that OpenOCD would work correctly in the user
space. Our host computer was running Linux, so we made a new udev rule
digilent-jtag-smt3.rules with the following contents: SUBSYSTEM==usb,
ATTRidVendor==0403, ATTRidProduct==6010, MODE=666.

3.2.5 ThunderX’s configuration file

Writing the target configuration file for the CPU is straightforward and
follows the steps described in Section 3.2.2.

• (1)-(3) select JTAG as a transport protocol and set the frequency of

39

3. Implementation

1 transport select jtag

2 reset_config none

3 adapter speed 100

4

5 jtag newtap auto0 tap -irlen 4 -expected-id 0x1a101399

6 dap create auto0.dap -chain-position auto0.tap

7 cti create cti0 -dap auto0.dap -ap-num 0 -baseaddr 0x88010000

8 target create core0 aarch64 -dap auto0.dap -ap-num 0 -coreid 0 -cti

cti0 -dbgbase 0x88000000

9 cti create cti1 -dap auto0.dap -ap-num 0 -baseaddr 0x88090000

10 target create core1 aarch64 -dap auto0.dap -ap-num 0 -coreid 1 -cti

cti1 -dbgbase 0x88080000

11

12 target smp core0 core1

13

14 init

Listing 3.12: ThunderX’s configuration file

JTAG-SMT3-NC

• (5)-(6) initialize ThunderX’s TAP and bind its DAP. Note that all the
devices on the chain that are set in non-bypass mode have to be declared
in the order they appear on the scan chain, starting from the one closest
to the adapter.

• (7) declares the Cross-Trigger Interface for the first core of ThunderX.
It is a mandatory parameter for ARMv8 cores (page 78 of the User’s
Guide [29]). The Base Address in the memory space of the Access Port
was taken from the ROM table section in the autodetection log (Line 31,
A.2). Note that the CoreSight Debug infrastructure sits behind Access
Port 0, as we found out in Section 3.1.6, hence the -ap-num 0 option.

• (8) declares the first core, specifies its microarchitecture, assigns the
CTI, and sets the starting address of the core’s debug registers (Line 28,
A.2). All other cores have to be configured separately.

• (12) binds both cores for SMP

• (14) signals the end of the configuration. OpenOCD enters the run
stage.

We source both thunderx.cfg and digilent-jtag-smt3-interface.cfg in
the board configuration file enzian.cfg (Listing 3.13). After this, we can start
the server with openocd -f enzian.cfg, and attach gdb the same way as we
did for the Nucleo board. (Section 3.2.3) Note that we still had to manually
supply the TRST signal to the ARM DAP the same way as we did in Section
3.2.1.

40

3.2. OpenOCD

1 source [find interface/digilent-jtag-smt3-interface.cfg]

2 source [find target/thunderx.cfg]

Listing 3.13: Enzian’s configuration file

41

Chapter 4

Evaluation

In this chapter, we assess the tools we have developed. In particular, we will
analyze the functionality of the STM32-based JTAG controller and evaluate
its performance in relation to other JTAG adapters utilized in our work.
We will also compare two ways we have established a debug session with
ThunderX: OpenOCD through the onboard controller and ARM DS through
the DSTREAM unit.

4.1 STM32

4.1.1 JTAG level

When testing an implementation of the JTAG adapter, one has to show that
it can successfully drive a JTAG scan chain. We have already conducted
such experiments for our Nucleo board on the schibenstoll02’s scan chain
(Figures 3.6 - 3.8) and on the Enzian’s DAP connected through the CPU’s
JTAG connector (Figures 3.10 - 3.12). The signal sequences demonstrate
that the Nucleo board can accurately navigate the state machine of the TAP
controller, properly configure the instruction register, generate the input
data, and sample the output at the correct points in the clock period. By
comparing the tests to their XSDB counterparts (Listings 3.3 to 3.1), we
deduce that the Nucleo board completely replicates the functionality of the
jtag sequence interface that drives the Platform Cable USB II except for
the explicit delay command. However, the tool lacks user-friendliness: in
contrast to TCL scripting, manually writing all signal sequences, including
the state transitions, was cumbersome and error-prone.

4.1.2 Data input

Next, we investigate how the two ways we can supply data to the Nucleo
board differ in user ergonomics. (See TDI&TMS implementation in Section

42

4.1. STM32

3.1.3.) We rerun schibenstoll02’s tests both with hardcoded signal sequences
and using UART. The latter avoids recompilation between the tests, so it does
not break the workflow. However, we have not implemented any way to
edit the input on the UART console. Thus, to minimize errors, we mostly
resort to pasting complete signal sequences into the console. That renders
the console redundant, as the Python script can seamlessly replace the TDI
and TMS arrays in the source code. Additionally, recompiling and flashing
the program is not an issue, as it only takes around 10 seconds.

The downside of both implementations is that they do not allow us to interact
with the execution dynamically. For example, even though the Nucleo board
supplies TRST, there is no way to trigger it asynchronously.

4.1.3 DAP level

In our work, we only utilized the Nucleo board to check the responsiveness
of the TAP controllers by conducting simple BYPASS and IDCODE tests.
However, this is not the limit of the tool since it can issue arbitrary control
and input sequences. We demonstrate that the Nucleo board can access
the DAP infrastructure on ThunderX situated behind the TAP, i.e., it also
functions on the level of the ARM Debug Interface and can configure the
DAP. We conduct two experiments. First, we will read the identification
register of the first Access Port of ThunderX’s DAP. We will also access the
memory space of the AP.

We connect the Nucleo board to ThunderX the same way we did it in Section
3.1.5. We then issue a 275-bit series of DPACC and APACC commands.
They all follow the same structure described in Section 2.3.1. For each
command, we first bring the state machine into a known TEST-LOGIC-
RESET state (I). We then proceed into SHIFT-IR (II) and shift in 0b1010 for
DPACC or 0b1011 for APACC (III). (We know that ThunderX’s DAP has
a 4-bit instruction register from the output of jtag targets in Listing 3.9).
Subsequently, we move from UPDATE-IR to SHIFT-DR (IV) and input the
data for the instruction: three configuration bits (V) and, in the case of the
write operation, 32 bits of data (VI). We start by configuring the CTRL/STAT
register that manages the operation of the DAP (Steps 1 and 2) and then read
the contents of the APIDR register (Steps 3, 4, and 5). In more detail for each
command:

1. SELECT.DPBANKSEL 0 write. To access CTRL/STAT, the DPBANKSEL
field of the SELECT register must be set to 0. The control bits 001 (V)
supplied by the TDI line initiate a DPACC write to the SELECT register.
(Section 2.3.1 describes the addressing model in detail.)

43

4. Evaluation

TDI: 00000 00000 0101 0000 001 00000000000000000000000000000000
TDO: 11111 11111 1000 1111 100 00000000000000000000000000000000
TMS: 11111 01100 0001 1100 000 00000000000000000000000000000001

︸ ︷︷ ︸
I

︸ ︷︷ ︸
II

︸︷︷︸
III

︸︷︷︸
IV

︸︷︷︸
V

︸ ︷︷ ︸
VI

2. CTRL/STAT write. The data portion of the TDI signal contains the
new value of the CTRL/STAT register. We make sure that all DAP
domains are powered up by setting the System powerup request CSYSP-
WRUPREQ and Debug powerup request CDBGPWRUPREQ fields
(CTRL/STAT discussion in Section 2.3.2). The bits are highlighted in
the TDI signal sequence. We also set all control fields whose default
value is not specified by the standard (see Section 2.3.2). Note that the
received response bit field 0b010 on the TDO line indicates the success
of the previous register access.

TDI: 00000 00000 0101 0000 010 00000000000000000000000000001010
TDO: 11111 11111 1000 1111 010 00000000000000000000000000000000
TMS: 11111 01100 0001 1100 000 00000000000000000000000000000001

3. SELECT.APBANKSEL 0xF write. The identification register APIDR
lies in the last register bank of the Access Port. We write the bank’s
offset value 0b1111 in the APBANKSEL field of the SELECT register.
Since we access the first Access Port in the DAP, the APSEL field is set
to 0b0000.

TDI: 00000 00000 0101 0000 001 00001111000000000000000000000000
TDO: 11111 11111 1000 1111 010 00000000000000000000000000000000
TMS: 11111 01100 0001 1100 000 00000000000000000000000000000001

4. APIDR read. The APIDR is the fourth register in the bank. The address
bits [2:1] in the APACC test data register contain its offset 0b11. Bit [0]
initiates the read access to APIDR.

TDI: 00000 00000 1101 0000 111 00000000000000000000000000000000
TDO: 11111 11111 1000 1111 010 00000000000000000000000000000000
TMS: 11111 01100 0001 1100 000 00000000000000000000000000000001

5. Now, all that is left is to loop back to CAPTURE-DR and latch the
output of the register read onto the scan chain (I). Note that we omit to
go through TEST-LOGIC-RESET to preserve APACC in the instruction
register (otherwise, the DAP would default back to IDCODE). If we

44

4.1. STM32

reverse the data field (III), we get the APIDR value 0x03990003 that we
determined in Listing.

TDI: 000000000000000 000 00000000000000000000000000000000
TDO: 111111111111111 010 11000000000000001001100111000000
TMS: 100000000000100 000 00000000000000000000000000000001

︸ ︷︷ ︸
I

︸︷︷︸
II

︸ ︷︷ ︸
III

The memory access experiment follows the same structure. The signal
sequences are in A.3.

Register and memory accesses build a complete programming model for the
DAP. Thus, the tests show that the DAP can be fully configured by the Nucleo
board. The additional functionality of the DAP still needs testing (e.g., the
transaction counter, variable memory size access, and the Large Physical
Address Extension (for the CVM-AP). We omit it due to time constraints.

Of course, the user-friendliness issue remains. The CoreSight Access Tool
replaces all the signal sequences that access the DAP registers with a simple
interface (Listing 3.1.6), while for the memory access (A.3), the program
delivers the same result with just one command dmr 1 0x80000040 1. Also,
the static nature of our JTAG controller is still a problem. For example,
the Nucleo board cannot react to memory access failures by polling on the
control bits and reissuing the failed commands.

4.1.4 Clock speed

The throughput of any JTAG adapter depends on two metrics: its clock speed
and the length of its path through the state machine. Optimizing the latter
provides limited speedup because the TAP controller spends most of its time
looping in the SHIFT states. Thus, when measuring the performance of our
implementation, we will only focus on the clock speed.

We generated the clock signal on the TCK pin both using the Pulse Width
Modulation. Alternatively, we could have connected the GPIO pin directly to
the MCU’s internal timer.The former option offers more flexibility in terms
of possible frequency (the internal clocks only have a limited set of prescaler
options) and change in duty cycle. But the end result is the same. So in our
testing we will use the PWM Mode. Note that neither method can hold the
clock signals to effectively halt the TAP controller, a feature heavily utilized
by the DSTREAM unit.

For out test sequence, we pick a simple IDCODE read performed on Thun-
derX’s DAP (Figure 4.1.4).

45

4. Evaluation

TDI: 00000 0000 00000000000000000000000000000000 000000
TDO: 11111 1111 10011001110010000000100001011000 111111
TMS: 11111 0100 00000000000000000000000000000001 111111

Figure 4.1: IDCODE test on Enzian

We aim to find the maximum operating frequency of our adapter running this
test. We connect the Nucleo board to the ThunderX’s JTAG port in the manner
described in Section 3.1.5. We set the timer’s clock source to its maximum
value of 64 MHz, remove prescaling, and perform the binary search on the
counter period value of the PWM based on whether the microcontroller
correctly outputs the IDCODE of ThunderX’s DAP. The output is read from
the UART console. The duty cycle of TCK is always set to 50% (i.e., the pulse
value is half of the counter period). We start at the counter period value
of 60000, which corresponds to 1.067kHz. Although we can determine the
resulting clock speed from the source clock frequency and the counter period
(64MHz/60000 ≈ 1.067kHz), we measure the frequency on the oscilloscope
(Figure 4.2).

Figure 4.2: Clock speed measurement

We adjust the counter period until we are close to its precision limit. The
resulting sequence is shown in Table 4.1.

Our implementation of the JTAG controller reaches its frequency limit when

46

4.2. OpenOCD

Counter Period TCK frequency Result
60000 1kHz OK
600 108kHz OK
300 213kHz FAIL: TDO is almost all 1
450 142kHz OK
375 170kHz OK
337 190kHz OK
318 201kHz FAIL: the TDO signal is skewed after bit 20
329 194.5 kHz OK

Table 4.1: IDCODE speed estimation

the Nucleo board cannot keep up with the oscillations of TCK and, as a
result, fails to correctly sample the output signal. For example, the frequency
of 201kHz is close to the threshold since the TDO output is almost correct; it
just fails to sample the signal in two clock periods, and that leads to a skew
in the result:

correct TDO: 11111111110011001110010000000100001011000111111
TDO at 201kHz: 11111111110011001110100000001000101100011111111

Thus, for the IDCODE test, the threshold is between 195kHz and 200kHz. To
be on the safe side, we further reduced it to 150kHz (counter period value
426) and tested our Nucleo board by reading the IDCODEs of schibenstoll02’s
scan chain (Figure 3.6) and rerunning APIDR (Section 4.1.3) and memory
accesses (A.3) on ThunderX. The Nucleo board passed all of the tests.

Although the frequency of 150kHz is far lower than the maximum speed of
the industry-grade JTAG adapters, it still falls within their operating range:
125kHz-30MHz for the Platform Cable USB II and 20kHz-180MHz for the
DSTREAM unit.

4.2 OpenOCD

4.2.1 OpenOCD’s limitations and boot problem

In this section, we evaluate the methods we used to establish the debug ses-
sion with ThunderX, which is the primary goal of this thesis. The procedures
are described in Section 3.1.4 for ARM Development Studio and at the end
of Section 3.2.5 for OpenOCD.

In both bases, we first test the conventional debug functionality. We halt and
resume the execution, walk through the code, disassemble the program, and

47

4. Evaluation

inspect the memory. ARM DS accomplishes all these tasks. Unfortunately, we
encounter several issues when using OpenOCD. The gdb’s info registers

command fails (see A.4). Additionally, since we configured OpenOCD
through the first Access Port, the tool is oblivious of the CVM-AP and cannot
access the system registers of the core.

But the main problem occurs when we try to reboot Enzian. While it works
with the DSTREAM unit plugged into the CPU’s JTAG port, Enzian crashes
on boot if the TRST pin is driven to logic 1. Recall that driving the pin is
necessary since the onboard programming module JTAG-STM3-NC does not
supply the TRST signal (Section 3.2.1). 0x0000000096000210 in the Exception
Syndrome Register (ESR) reveals that a memory read caused the crash. The
Fault Address Register (FAR) holds 0x000087e002000100, the address of the
DAP Debug Authentication Register (DAP IMP DAR) in ThunderX [13].Its
task is to configure the operation of ThunderX’s DAP. For example, it can
hide the trace unit or the memory buses used by Access Ports from the debug
adapter. As we detail later in Chapter 5, one potential explanation is that
there is a bus conflict between the DAP and the processor. We tried to solve
it by resetting the DAP. Unfortunately, it did not work.

We can resume the execution by removing the jumper wire from the TRST
pin and resetting the CPU via the Baseboard Management Controller (BMC)
console. We can also program the Nucleo board to control the TRST line on
ThunderX’s JTAG port via the input from the UART console. When Enzian
is booting, the Nucleo board should keep TRST low. We assert the reset line
after the process is finished. Then, we can start up the OpenOCD server.
Of course, this is impractical. Thus, we failed to reach our original goal for
OpenOCD, which was to function as a remote debugging tool that did not
require physical access to the machine.

4.2.2 JTAG and DAP API

The functionality of OpenOCD is not limited only to debugging. It exposes
some parts of the JTAG and DAP API that function similarly to the Xilinx
System Debugger and CoreSight Access Tool. We can use the API to turn
JTAG-SMT3-NC into a low-level controller. We will briefly describe the
commands’ syntax, then test them on ThunderX’s DAP.

For JTAG, OpenOCD supports navigation through the state machine using
pathmove command 1, halt of the execution with runtest, and I/O with
drscan and irscan for JTAG data and instruction registers respectively.
The commands can be issued through the telnet console or placed in the

1The state names used by pathmove are not covered in the manual. We were able to
find them by inspecting the source code: RESET, RUN/IDLE, DRSELECT, DRCAPTURE,
DRSHIFT, DREXIT1, DRPAUSE, DREXIT2, DRUPDATE, IRSELECT, IRCAPTURE, IRSHIFT,
IREXIT1, IRPAUSE, IREXIT2, IRUPDATE.

48

4.2. OpenOCD

execution stage of the configuration file. In that case, OpenOCD will issue
the commands when it starts up the server.

We use the same setup as in Section 4.2.1 to test the interface. We connect
to OpenOCD’s server via the telnet port and issue the JTAG commands. In
Listing 4.1, we manually set up the instruction register of ThunderX’s DAP
to run IDCODE and BYPASS instructions. Listing 4.2 replicates the Platform
Cable test in Listing 3.1. It brings the state machine into the TEST-LOGIC-
RESET state and then tries to output the contents of the test data register.
OpenOCD passes the first test. It correctly prints the IDCODE of ThunderX’s
DAP (line 5). The input signal in BYPASS is delayed by a bit 0 on the output
line (line 9). But the second test fails. Putting the state machine into RESET
bugs OpenOCD. We suspect that OpenOCD expects the JTAG test logic
to load the BYPASS operation by default upon reset, even if the IDCODE
operation is available. Nevertheless, the JTAG interface of OpenOCD works,
allowing us to interact with the DAP at a low level. If the boot problem
(Section 4.2.2) can be resolved by configuring the DAP, this interface provides
a viable way to achieve that.

1 ~$ telnet localhost 4444

2

3 > irscan auto0.tap 0xe

4 > drscan auto0.tap 64

0x5555555555555555

5 555555551a101399

6 > irscan auto.tap 0xf

7 > irscan auto0.tap 0xf

8 > drscan auto0.tap 8 0x55

9 aa

Listing 4.1: IDCODE and BYPASS

1 ~$ telnet localhost 4444

2

3 > pathmove RESET

4 > drscan auto0.tap 32

0x00000000

5 Can’t execute as the selected

tap is in BYPASS

6 > irscan auto0.tap 0xe

7 > drscan auto0.tap 32

0x00000000

8 1a101399

Listing 4.2: BYPASS failure

OpenOCD’s auto-probing mechanism is similar to XSDB’s jtag targets

command. It runs automatically if the configuration file does not include the
declaration of TAP devices on the scan chain. Unfortunately, the tool fails on
Enzian’s scan chain when multiple devices are set in normal (non-bypass)
mode. Even though separately it correctly identifies the devices and their
instruction register width.

Regarding the DAP, OpenOCD does not have an analog to CSAT’s DAP
enumeration. All DAPs on the chain must be declared manually with the dap

create command, which assigns a DAP to a corresponding TAP controller. If
the declaration is successful, one can inspect the ROM tables of Access Ports
with $dap name info <ap index>. ($dap name is a placeholder for a name
we assign to the DAP during its declaration) Additionally, the contents of
various registers can be read with $dap name dpreg <register name> and

49

4. Evaluation

$dap name apreg <ap index> <register name> where <register name> is
one of the DAP registers such as debug base address (baseaddr), AP’s ID
(apid), or select AP (apsel). Alternatively, we can use numerical offsets into
AP and DP register banks.

In Listing 4.3, we access the DAP registers (Lines 3-7) similarly to how we did
it in Section 3.7 using the CoreSight Access Tool. We also print the contents of
the ROM table for the first Access Port. OpenOCD fails to identify the type of
the AP due to nonstandard type field entry in APIDR (Section 3.1.6). Using
the DEVTYPE register fields (Section 2.3.4), OpenOCD correctly recognizes
the page at address 0x88000000 as a debug register file of a processor core.
However, it fails to identify ThunderX, possibly because its part number
value in the PIDR’s field is not publicly disclosed. (cf. Lines 25-28 of the
ARM DS autodetection log in A.2). If we had not had access to the DSTREAM
and ARM DS, we could have used the output of this command to set up the
addresses in ThunderX’s configuration file (Section 3.2.5).

1 ~$ telnet localhost 4444

2

3 > auto0.dap dpreg 0x0

4 0x0a111399

5 > auto0.dap apreg 0 0xfc

6 0x03990003

7 > dap info 0

8 AP # 0x0

9 AP ID register 0x03990003

10 Type is Unknown

11 MEM-AP BASE 0x00000003

12 Valid ROM table present

13

14 Component class is 0x1, ROM table

15 MEMTYPE system memory not present: dedicated debug bus

16 ROMTABLE[0x0] = 0x88000003

17 Component base address 0x88000000

18 Peripheral ID 0x03010cc20e

19 Designer is 0x1cc, Cavium Networks

20 Part is 0x20e, Unrecognized

21 Component class is 0x9, CoreSight component

22 Type is 0x15, Debug Logic, Processor

23 Dev Arch is 0x47706a15, ARM Ltd "Processor debug

architecture (v8.0-A)" rev.0

24

Listing 4.3: DAP interface

Note that compared to CSAT, OpenOCD does not permit write operations.
Thus, if we want to configure the DAP in OpenOCD, we will have to use the
JTAG interface.

50

Chapter 5

Conclusion

ARM DSTREAM, a debug adapter for ARM-based targets, was originally
unable to interface with the debug infrastructure on ThunderX. That severely
limited the debugging options for the Enzian processor. Our task was to
locate and solve this problem. We started by interacting with the Debug
Access Port on Enzian at the JTAG protocol level. For this, we initially
employed the Platform Cable USB II, a JTAG adapter that exposes the JTAG
communication interface to the user in the form of TCL commands. Aiming
for more control over the execution, we designed our JTAG controller based
on an STM32 Nucleo board. For simplicity, we implemented a static adapter
that generated the signals according to sequences we passed to the Nucleo
board. Still, the tool could drive the JTAG scan chains and communicate with
the debug infrastructure behind the ARM DAP.

Neither Platform Cable USB II nor the Nucleo board managed to get any
response from ThunderX’s DAP. The actual cause of the problem turned out
to be easily fixable. A missing jumper on Enzian’s PCB prevented the TRST
line from reaching the DAP. Thus, the JTAG test logic did not react to the
signals sent from the DSTREAM unit. After we had closed the line with the
jumper, ARM Development Studio successfully established the bare-metal
debug session with ThunderX. We also used our Nucleo board to investigate
faulty parts of the autodetection procedure responsible for reconstructing the
debug topology on the chip. We identified that Cavium’s implementation
of the BYPASS instruction does not adhere to the standard, which leads to
the autodetection incorrectly counting the devices on the chain. Using the
working DSTREAM connection, we further explored the DAP infrastructure
with the help of the CoreSight Access Tool.

Finally, we investigated an alternative to DSTREAM, a programming module
JTAG-SMT3-NC already present on Enzian’s board. The software that usually
interacted with the module was unable to connect to ThunderX. We resorted
to an open-source alternative, OpenOCD. We attached gdb to ThunderX’s

51

5. Conclusion

cores by writing our configuration files for the JTAG adapter and the proces-
sor. Unfortunately, the tool encountered several issues compared to ARM DS
debugging. Mainly because, in contrast to ARM DS, it does not know about
the specifics of ThunderX and treats it as a generic ARMv8 CPU. Still, the
insights we gained about that part of the infrastructure and JTAG-SMT3-NC,
in particular, can be helpful for future work with the module.

We propose several ideas for future projects that build upon our work or
tackle the issues we were unable to solve due to time constraints.

STM32 JTAG Adapter Optimization. Since the adapter’s speed was ir-
relevant to our work, we prioritized the program’s simplicity and did not
perform any optimizations. For example, we stored each bit of the input and
control signals as a separate byte in the array. Employing a more compact
way to store the signals should decrease the total amount of memory accesses
and speed up the execution.

Sequence compiler. Even though writing signal sequences by hand was fine
for simple scan chain tests, the example in Section 4.1.3 shows that anything
more complicated dramatically increases the complexity of the sequences. We
can simplify the process by implementing a compiler that would transform
XSDB or CSAT-like scripts into bit sequences. The compiler could start by
incorporating the commands similar to the jtag sequence interface. This
interface can, in turn, be used to implement separate JTAG-level instructions
(IDCODE, BYPASS, DPACC, and APACC). The last step would be to provide
register and memory accesses of the DAP. One application of this interface
could be halting a ThunderX’s core in a manner similar to how CSAT does it
for an Armv7 platform [5].

Boot problem. For any further work with the onboard JTAG controller,
solving this issue is paramount. Without it, we cannot leave the CPU’s
jumper configuration header in normal mode on the daisy chain. Since
the exception is thrown on the read access, one hypothesis is that the DAP
locks the bus for itself and that the problem could be solved by resetting the
DAP and then restarting the CPU from the BMC’s console. We connect the
Nucleo board to the CPU’s JTAG header, cause ThunderX to crash, and try to
reset the DAP by asserting the Debug reset request bit CDBGRSTREQ of the
CTRL/STAT register (The reset procedure is described in Section B2.4 of the
ADI Speicification [8]). Unfortunately, it fails. When we read the CTRL/STAT
register to get the response information, the Debug reset acknowledge bit
CDBGRSTACK is always 0 (Figure 5). According to the ADI specification,
this strongly suggests that this reset procedure of the DAP is not supported
by ThunderX.

FTDI probe & ARM DS. ARM Development Studio can work with third-
party debug probes. In particular, it provides support for FTDI converters.
ARM DS running on a computer connected to JTAG-SMT3-NC through the

52

CTRL/STAT write: 00000000000000000000000000101010
CTRL/STAT read: 00000000000000000000000000101111

Figure 5.1: 32 bits of CTRL/STAT. The left most bit is the least significant bit in the register. The 27th
bit is debug reset request CDBGRSTREQ. The 28th bit is debug reset acknowledge CDBGRSTACK
(highlighted in bold)

USB cable successfully identifies the adapter in the Connection Browser
window (Figure 5.2), and we can use it for the autodetection procedure.
(Note that for Linux computers, you might need to load another FTDI driver;
see Section 10.3 in the ARM DS Getting Started Guide [10]) Unfortunately,
ARM DS fails to drive the adapter, and the JTAG signals coming from the
JTAG-SMT3-NC module remain unchanged throughout the autodetection.
We think the reason for this is that the JTAG-SMT3-NC module features
additional signals that are not part of the standard FTDI device pinout.
For JTAG-SMT3-NC, this is the JTAG enable OEJTAG signal that has to be
set to 1 (Section 3.2.4). If there is a way to do this in ARM DS, it would
eliminate the need for OpenOCD and resolve all debug session issues caused
by OpenOCD’s lack of familiarity with ThunderX.

Figure 5.2: ARM DS identifies the FTDI converter

53

Appendix A

Appendix

A.1 Failed autodetection log
1 [22/07/24 11:22:31] --- --- ---

2 [22/07/24 11:22:31] Arm Development Studio v2023.1, build number

202310907

3 [22/07/24 11:22:31] JTAG Clock Speed : 20000Hz

4 [22/07/24 11:22:31] Beginning Autodetection

5 [22/07/24 11:22:31] --- --- ---

6 [22/07/24 11:22:31] Counting devices:

7 [22/07/24 11:22:31] DR Chain [136]:

8 11
11

9 [22/07/24 11:22:31] Device Count: 0

10 [22/07/24 11:22:31] Failed to detect scanchain devices

11 [22/07/24 11:22:31] Performing legacy SWD->JTAG switch

12 [22/07/24 11:22:31] Counting devices:

13 [22/07/24 11:22:31] DR Chain [136]:

14 11
11

15 [22/07/24 11:22:31] Device Count: 0

16 [22/07/24 11:22:31] Performing Dormant Mode SWD->JTAG switch

17 [22/07/24 11:22:31] Counting devices:

18 [22/07/24 11:22:31] DR Chain [136]:

19 11
11

20 [22/07/24 11:22:31] Device Count: 0

21 [22/07/24 11:22:31] JTAG detection failed, trying SWD

22 [22/07/24 11:22:32] WARNING - Multi-drop SWD is not supported, a

single DAP on the scanchain has been assumed.

23 [22/07/24 11:22:34] --- --- ---

24 [22/07/24 11:22:34] Enumerating AP devices for DAP at scanchain index

0:

25 [22/07/24 11:22:37] Read of APIDR for Access Port returned invalid

data

54

A.2. Successful autodetection log

26 [22/07/24 11:22:37] This is likely to be related to the probe mode

being incorrectly set to SWD.

27 [22/07/24 11:22:37] Halting detection - bad AP configuration detected

when enumerating APs.

A.2 Successful autodetection log

The session log was edited for length. Missing parts are indicated by five
dots.

1 [17/04/24 14:53:13] --- --- ---

2 [17/04/24 14:53:13] Arm Development Studio v2023.1, build number

202310907

3 [17/04/24 14:53:13] JTAG Clock Speed : Auto

4 [17/04/24 14:53:13] Beginning Autodetection

5 [17/04/24 14:53:13] --- --- ---

6 [17/04/24 14:53:13] Counting devices:

7 [17/04/24 14:53:13] DR Chain [136]:

8 11
11

9 [17/04/24 14:53:13] Device Count: 0

10 [17/04/24 14:53:13] Failed to detect scanchain devices

11

12 [17/04/24 14:53:14] Enumerating AP devices for DAP at scanchain index

0:

13 [17/04/24 14:53:14] Number of AP buses detected: 2

14 [17/04/24 14:53:14] AP types:

15 [17/04/24 14:53:14] APB-AP

16 [17/04/24 14:53:14] APB-AP

17 [17/04/24 14:53:14] --- --- ---

18 [17/04/24 14:53:15] --- --- ---

19 [17/04/24 14:53:15] Looking for ROM tables on AP0 (APB-AP)

20 [17/04/24 14:53:15] APB-AP ROM table base address detected as

0x00000003

21 [17/04/24 14:53:15] Reading ROM table for AP index 0, base address

= 0x00000003

22 [17/04/24 14:53:16] Component ID registers:

23 [17/04/24 14:53:16] CID 0: 0x0d

24

25 [17/04/24 14:53:16] Reading peripheral and component ID registers

of device at address 0x88000000

26

27 [17/04/24 14:53:16] Peripheral ID = 0x20e, JEP-106 code,

including continuation = 0x34c, DEVTYPE = 0x15, DEVARCH = 0x6a15,

Revision = 0x0

28 [17/04/24 14:53:16] ThunderX-r2 found at address 0x88000000

29 [17/04/24 14:53:16] Reading peripheral and component ID registers

of device at address 0x88010000

55

A. Appendix

30

31 [17/04/24 14:53:16] CSCTI found at address 0x88010000

32

33 [17/04/24 14:53:17] ThunderX-TRC found at address 0x8FFB0000

34 [17/04/24 14:53:17] End of ROM table

35 [17/04/24 14:53:17] --- --- ---

36 [17/04/24 14:53:17] Looking for ROM tables on AP1 (APB-AP)

37 [17/04/24 14:53:17] APB-AP ROM table base address detected as

0x00000003

38 [17/04/24 14:53:17] Reading ROM table for AP index 1, base address

= 0x00000003

39 [17/04/24 14:53:17] Failed to read ROM table: Failed to read 16

bytes from address 0x00000FF0 on CSMEMAP_1

40

41 [17/04/24 14:53:19] --- --- ---

42 [17/04/24 14:53:20] Autodetection Complete

43 [17/04/24 14:53:39] Creating database entry...

44 [17/04/24 14:53:39] Platform "Systems Group - Enzian 17 04 2024"

built successfully

A.3 MEM-AP memory read

The setup of the experiment is the same as in Section 4.1.3. This time, we
issue a 328-bit series of commands. Apart from the CTRL/STAT setup at
the beginning of the execution (Steps 1 and 2), we also must configure the
Control/Status Word register (CSW) register that manages the AP’s memory
transactions into the associated address space (Step 3). The rest is the memory
access itself. We pass the address to the Transfer Address Register (Step 4),
request the memory read through the Data Read/Write register (Step 5), and
read the result (Step 6).

1. SELECT.DPBANKSEL 0 write.

TDI: 00000 00000 0101 0000 001 00000000000000000000000000000000
TDO: 11111 11111 1000 1111 100 00000000000000000000000000000000
TMS: 11111 01100 0001 1100 000 00000000000000000000000000000001

2. CTRL/STAT write.

TDI: 00000 00000 0101 0000 010 00000000000000000000000000001010
TDO: 11111 11111 1000 1111 010 00000000000000000000000000000000
TMS: 11111 01100 0001 1100 000 00000000000000000000000000000001

3. CSW write. Every AP register we will access is located in the first

56

A.4. Register read failure in OpenOCD

register bank. The APBANKSEL field of the SELECT register is already
set to 0b0000 in the first step. All that is left to do is to change the offset
value in the control bits of the APACC instruction. CSW is the first
register in the bank (offset 0b00). The new content of the CSW register
ensures that the device is on and sets the standard parameters for the
memory transaction. For example, we choose 32-bit memory access
(bits [2:0]) and enable the Access Port (bit [6]).

TDI: 00000 00000 1101 0000 000 01000010000000000000000000000001
TDO: 11111 11111 1000 1111 010 00000000000000000000000000000000
TMS: 11111 01100 0001 1100 000 00000000000000000000000000000001

4. TAR write 0x80000040. 32-bit TAR is the second register in the bank
(offset 0b01). The data field contains our target address 0x80000040.

TDI: 00000 00000 1101 0000 010 00000010000000000000000000000001
TDO: 11111 11111 1000 1111 010 00000000000000000000000000000000
TMS: 11111 01100 0001 1100 000 00000000000000000000000000000001

5. DRW read. Recall that APACC read operations to the DRW register
initiate a memory read from the address held in the TAR register. DRW
is the fourth register in the bank.

TDI: 00000 00000 1101 0000 111 00000000000000000000000000000000
TDO: 11111 11111 1000 1111 010 00000000000000000000000000000000
TMS: 11111 01100 0001 1100 000 00000000000000000000000000000001

6. We latch the result onto the scan chain by navigating the state machine
into CAPTURE-DR. It is equal to CSAT’s output 0x88290003 of the dmr

0 0x80000040 1 command.

TDI: 0000000000000 00 000 00000000000000000000000000000000
TDO: 1111111111111 11 010 11000000000000001001010000010001
TMS: 1000000000001 00 000 00000000000000000000000000000001

A.4 Register read failure in OpenOCD

1 ~$ gdb-multiarch

2 GNU gdb (Ubuntu 12.1-0ubuntu1~22.04.2) 12.1

3

4 (gdb) target extended-remote localhost:3333

57

A. Appendix

5

6 0xffff80008163d6dc in ?? ()

7 (gdb) display/2i $pc
8 1: x/2i $pc
9 => 0xffff80008163d6dc: nop

10 0xffff80008163d6e0: mov x0, #0x0 // #0

11 (gdb) ni

12 core1 halted in AArch64 state due to debug-request, current mode: EL1H

13 cpsr: 0x600000c5 pc: 0xffff80008163d6dc

14 MMU: enabled, D-Cache: enabled, I-Cache: enabled

15 0xffff80008163d6e0 in ?? ()

16 1: x/2i $pc
17 => 0xffff80008163d6e0: mov x0, #0x0 // #0

18 0xffff80008163d6e4: mov x1, #0x0 // #0

19 (gdb) info registers

20 x0 0x0 0

21 x1 0x0 0

22

23 x30 0xffff80008163d73c 18446603338392000316

24 sp 0xffff800083213d50 0xffff800083213d50

25 pc 0xffff80008163d6dc 0xffff80008163d6dc

26 cpsr 0x600000c5 [SP=1 EL=1 nRW=0 F I C Z]

27 fpsr 0x10 16

28 fpcr 0x0 0

29 ELR_EL1 0x0 0x0

30 ESR_EL1 0x96000004 2516582404

31 SPSR_EL1 0x600003c5 1610613701

32 Could not fetch register "ELR_EL2"; remote failure reply ’E0E’

58

A.5. OpenOCD to STM32 connection log

A.5 OpenOCD to STM32 connection log

1 ~$ openocd -f

board/st_nucleo_g0.cfg

2 . . .

3 Info : The selected transport

took over low-level target

control. The results might

differ compared to plain

JTAG/SWD

4 srst_only separate srst_nogate

srst_open_drain

connect_deassert_srst

5 Info : Listening on port 6666

for tcl connections

6 Info : Listening on port 4444

for telnet connections

7 . . .

8 Info : [stm32g0x.cpu]

Examination succeed

9 . . .

10 Info : Listening on port 3333

for gdb connections

11 Info : accepting ’gdb’

connection on tcp/3333

12 [stm32g0x.cpu] halted due to

debug-request, current

mode: Thread xPSR:

0x61000000 pc: 0x080043c6

msp: 0x20008fa8

13 Info : device idcode =

0x20006460 (STM32G07/G08xx

- Rev B : 0x2000)

14 Info : halted: PC:

0x080043c8000

Listing A.1: OpenOCD server pane

1 ~$ gdb-multiarch

2 . . .

3 (gdb) target extended-remote

localhost:3333

4 Remote debugging using

localhost:3333

5 warning: No executable has

been specified and target

does not support

6 determining executable

automatically. Try using

the "file" command.

7 0x080043c6 in ?? ()

8 (gdb) display/3i $pc
9 1: x/3i $pc

10 => 0x80043c6: ldr r3, [r7,

#24]

11 0x80043c8: adds r3, #1

12 0x80043ca: beq.n 0x800446a

13 (gdb) ni

14 halted: PC: 0x080043c8

15 0x080043c8 in ?? ()

16 1: x/3i $pc
17 => 0x80043c8: adds r3, #1

18 0x80043ca: beq.n 0x800446a

19 0x80043cc: bl 0x8001468

Listing A.2: GDB pane

59

Bibliography

[1] Arm Limited. CoreSight Components Technical Reference Manual, H edition,
2009. Available at https://developer.arm.com/documentation/ddi0
314/.

[2] Arm Limited. ARM DSTREAM System and Interface Design Reference, 2011.
Available at https://developer.arm.com/documentation/dui0499/.

[3] Arm Limited. White Paper: CoreSight Technical Introduction. A quick-
start for designers. Technical report, 2013. Document Number: ARM-
EPM-039795.

[4] Arm Limited. ARM DS-5 ARM DSTREAM User Guide, K edition, 2015.
Available at https://developer.arm.com/documentation/dui0481/.

[5] Arm Limited. Low Level Debug using CSAT on Armv7-based platforms,
0100-02 edition, 2019. Available at https://developer.arm.com/docu
mentation/102715/0100/.

[6] Arm Limited. How PCE identifies the CoreSight components on the target
board, 1.0 edition, 2021. Available at https://developer.arm.com/do
cumentation/102582/0100/How-does-PCE-detect-the-information.

[7] Arm Limited. Arm Coresight Architecture Specification v3.0, F edition, 2022.
Available at https://developer.arm.com/documentation/ihi0029/.

[8] Arm Limited. Arm Debug Interface Architecture Specification ADIv5.0 to
ADIv5.2, G edition, 2022. Available at https://developer.arm.com/do
cumentation/ihi0031/.

[9] Arm Limited. CoreSight Access Tool (CSAT) User Guide, 2.6.0 edition, 2022.
Available at https://developer.arm.com/documentation/epm05179
2/.

60

https://developer.arm.com/documentation/ddi0314/
https://developer.arm.com/documentation/ddi0314/
https://developer.arm.com/documentation/dui0499/
https://developer.arm.com/documentation/dui0481/
https://developer.arm.com/documentation/102715/0100/
https://developer.arm.com/documentation/102715/0100/
https://developer.arm.com/documentation/102582/0100/How-does-PCE-detect-the-information
https://developer.arm.com/documentation/102582/0100/How-does-PCE-detect-the-information
https://developer.arm.com/documentation/ihi0029/
https://developer.arm.com/documentation/ihi0031/
https://developer.arm.com/documentation/ihi0031/
https://developer.arm.com/documentation/epm051792/
https://developer.arm.com/documentation/epm051792/

Bibliography

[10] Arm Limited. Arm Development Studio Getting Started Guide, 2024.0-00
edition, 2024. Available at https://developer.arm.com/documentatio
n/101469/.

[11] Arm Limited. The JTAG IDCODE for a Cortex processor, KBA Article
ID: KA001235, 2024. Online. Available at https://developer.arm.co
m/documentation/ka001235/. Accessed 2024-08-03.

[12] Cavium. Cavium ThunderX CN88XX Hardware Reference Manual, 0.965E
edition, 2015.

[13] Cavium. Cavium ThunderX CN88XX, Pass 2 Hardware Reference Manual,
2.7P edition, 2017.

[14] David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino, Adam
Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa Licciardello,
Kristina Martsenko, Reto Achermann, Gustavo Alonso, and Timothy
Roscoe. Enzian: an open, general, CPU/FPGA platform for systems
software research. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’22, page 434–451, New York, NY, USA, 2022. Association for
Computing Machinery.

[15] Digilent. JTAG-SMT3-NC Reference Manual, 2021. Available at https:
//digilent.com/reference/_media/reference/programmers/jtag-s

mt3/jtag-smt3-nc-rm.pdf.

[16] Digilent. JTAG-SMT2-NC Reference Manual, 2023. Available at https:
//digilent.com/reference/_media/programmers/jtag-smt2-nc/jt

ag-smt2-nc_rm.pdf.

[17] DirtyJTAG. DirtyJTAG. JTAG probe firmware, 2022. Online. Available
at https://github.com/dirtyjtag/DirtyJTAG. Accessed 2024-08-03.

[18] Felix Domke. Blackbox JTAG Reverse Engineering. 2009.

[19] Enclustra GmbH. Mercury XU5 SoC Module User Manual, 08 edition,
2021.

[20] Enzian Team. The Enzian Research Computer; Schematics, April 2022.
Available at https://doi.org/10.5281/zenodo.6465908.

[21] FTDI Limited. Application Note AN 135 FTDI MPSSE Basics, 1.1 edition,
2010. Available at https://www.ftdichip.com/Documents/AppNotes/
AN_135_MPSSE_Basics.pdf.

61

https://developer.arm.com/documentation/101469/
https://developer.arm.com/documentation/101469/
https://developer.arm.com/documentation/ka001235/
https://developer.arm.com/documentation/ka001235/
https://digilent.com/reference/_media/reference/programmers/jtag-smt3/jtag-smt3-nc-rm.pdf
https://digilent.com/reference/_media/reference/programmers/jtag-smt3/jtag-smt3-nc-rm.pdf
https://digilent.com/reference/_media/reference/programmers/jtag-smt3/jtag-smt3-nc-rm.pdf
https://digilent.com/reference/_media/programmers/jtag-smt2-nc/jtag-smt2-nc_rm.pdf
https://digilent.com/reference/_media/programmers/jtag-smt2-nc/jtag-smt2-nc_rm.pdf
https://digilent.com/reference/_media/programmers/jtag-smt2-nc/jtag-smt2-nc_rm.pdf
https://github.com/dirtyjtag/DirtyJTAG
https://doi.org/10.5281/zenodo.6465908
https://www.ftdichip.com/Documents/AppNotes/AN_135_MPSSE_Basics.pdf
https://www.ftdichip.com/Documents/AppNotes/AN_135_MPSSE_Basics.pdf

Bibliography

[22] FTDI Limited. FT232H single channel hi-speed USB to multipurpose UART/-
FIFO IC Datasheet, 2.1 edition, 2023. Available at https://ftdichip.c
om/wp-content/uploads/2023/09/DS_FT232H.pdf.

[23] FTDI Limited. FT2232H Dual High Speed USB to Multipurpose UART/FIFO
IC Datasheet, 2.8 edition, 2024. Available at https://ftdichip.com/w
p-content/uploads/2024/05/DS_FT2232H.pdf.

[24] IEEE. IEEE Standard for Test Access Port and Boundary-Scan Architec-
ture. IEEE Std. 1149.1-2013, 2013.

[25] JColvin. Pin Mapping for JTAG-SMT3-NC. Digilent Forums, 2019.
Online. Available at https://forum.digilent.com/topic/17752-p
in-mapping-for-jtag-smt3-nc/?do=findComment&comment=45305.
Accessed 2024-08-03.

[26] jpeyron. Pin mapping for JTAG-SMT2-NC? Digilent Forums, 2017.
Online. Available at https://forum.digilent.com/topic/4745-pin-m
apping-for-jtag-smt2-nc/#comment-19222. Accessed 2024-08-03.

[27] Arm Limited. How to configure debug and trace, Article ID: KA001452,
2024. Online. Available at https://developer.arm.com/documentatio
n/ka001452/. Accessed 2024-08-03.

[28] OpenOCD. Open On-Chip Debugger, 2023. Online. Available at https:
//openocd.org/. Accessed 2024-08-03.

[29] OpenOCD. Open On-Chip Debugger: OpenOCD User’s Guide, 0.12.0+dev
edition, 2024. Available at https://openocd.org/doc/pdf/openocd.pd
f.

[30] Dominic Rath. Open on-chip debugger. Diploma thesis, University of
Applied Sciences Augsburg, Augsburg, 2005.

[31] STMicroelectronics. Description of STM32G0 HAL and low-layer drivers,
UM2319 User manual, 2nd edition, 2020. Available at https://www.st.c
om/resource/en/user_manual/um2319-description-of-stm32g0-h

al-and-lowlayer-drivers-stmicroelectronics.pdf.

[32] STMicroelectronics. How to use the STM32CubeIDE terminal to send
and receive data, 2024. Online. Available at https://community.st.c
om/t5/stm32-mcus/how-to-use-the-stm32cubeide-terminal-to-s

end-and-receive-data/ta-p/49434. Accessed 2024-08-03.

[33] STMicroelectronics. STM32 Nucleo-64 boards (MB1360), UM2324 User
manual, 5th edition, 2024. Available at https://www.st.com/resource/

62

https://ftdichip.com/wp-content/uploads/2023/09/DS_FT232H.pdf
https://ftdichip.com/wp-content/uploads/2023/09/DS_FT232H.pdf
https://ftdichip.com/wp-content/uploads/2024/05/DS_FT2232H.pdf
https://ftdichip.com/wp-content/uploads/2024/05/DS_FT2232H.pdf
https://forum.digilent.com/topic/17752-pin-mapping-for-jtag-smt3-nc/?do=findComment&comment=45305
https://forum.digilent.com/topic/17752-pin-mapping-for-jtag-smt3-nc/?do=findComment&comment=45305
https://forum.digilent.com/topic/4745-pin-mapping-for-jtag-smt2-nc/#comment-19222
https://forum.digilent.com/topic/4745-pin-mapping-for-jtag-smt2-nc/#comment-19222
https://developer.arm.com/documentation/ka001452/
https://developer.arm.com/documentation/ka001452/
https://openocd.org/
https://openocd.org/
https://openocd.org/doc/pdf/openocd.pdf
https://openocd.org/doc/pdf/openocd.pdf
https://www.st.com/resource/en/user_manual/um2319-description-of-stm32g0-hal-and-lowlayer-drivers-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2319-description-of-stm32g0-hal-and-lowlayer-drivers-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2319-description-of-stm32g0-hal-and-lowlayer-drivers-stmicroelectronics.pdf
https://community.st.com/t5/stm32-mcus/how-to-use-the-stm32cubeide-terminal-to-send-and-receive-data/ta-p/49434
https://community.st.com/t5/stm32-mcus/how-to-use-the-stm32cubeide-terminal-to-send-and-receive-data/ta-p/49434
https://community.st.com/t5/stm32-mcus/how-to-use-the-stm32cubeide-terminal-to-send-and-receive-data/ta-p/49434
https://www.st.com/resource/en/user_manual/um2324-stm32-nucleo64-boards-mb1360-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2324-stm32-nucleo64-boards-mb1360-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2324-stm32-nucleo64-boards-mb1360-stmicroelectronics.pdf

Bibliography

en/user_manual/um2324-stm32-nucleo64-boards-mb1360-stmicro

electronics.pdf.

[34] STMicroelectronics. STM32Cube - discover the STM32Cube ecosystem,
2024. Online. Available at https://www.st.com/content/st_com/en/e
cosystems/stm32cube-ecosystem.html. Accessed 2024-08-03.

[35] STMicroelectronics. STM32CubeIDE user guide, UM2609 User manual,
12th edition, 2024. Available at https://www.st.com/resource/en/u
ser_manual/um2609-stm32cubeide-user-guide-stmicroelectronic

s.pdf.

[36] STMicroelectronics. STM32CubeMX for STM32 configuration and initializa-
tion C code generation, UM1718 User manual, 45th edition, 2024. Available
at https://www.st.com/resource/en/user_manual/um1718-stm32cu
bemx-for-stm32-configuration-and-initialization-c-code-gen

eration-stmicroelectronics.pdf.

[37] Michael Williams. Low Pin-count Debug Interfaces for Multi-device
Systems. 2009.

[38] Xilinx. Platform Cable USB II Data Sheet, 1.5.1 edition, 2018. Available at
https://docs.amd.com/v/u/en-US/ds593.

[39] Xilinx. Xilinx Software Command-Line Tool (XSCT), UG1208 edition, 2018.
Available at https://docs.amd.com/v/u/2018.2-English/ug1208-x
sct-reference-guide.

63

https://www.st.com/resource/en/user_manual/um2324-stm32-nucleo64-boards-mb1360-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2324-stm32-nucleo64-boards-mb1360-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2324-stm32-nucleo64-boards-mb1360-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2324-stm32-nucleo64-boards-mb1360-stmicroelectronics.pdf
https://www.st.com/content/st_com/en/ecosystems/stm32cube-ecosystem.html
https://www.st.com/content/st_com/en/ecosystems/stm32cube-ecosystem.html
https://www.st.com/resource/en/user_manual/um2609-stm32cubeide-user-guide-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2609-stm32cubeide-user-guide-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2609-stm32cubeide-user-guide-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1718-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1718-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1718-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://docs.amd.com/v/u/en-US/ds593
https://docs.amd.com/v/u/2018.2-English/ug1208-xsct-reference-guide
https://docs.amd.com/v/u/2018.2-English/ug1208-xsct-reference-guide

	Contents
	Introduction
	Background
	JTAG
	Test Access Port
	Test Logic
	TAP controller
	Registers

	SWD
	ARM Debug Interface and ARM Debug Access Port
	The Debug Port
	DP registers
	AP registers
	ROM Tables and Debug register files

	JTAG infrastructure on Enzian
	DAP infrastructure on ThunderX

	Implementation
	Fixing the JTAG issues with ThunderX
	Replicating the Problem
	Platform Cable USB II
	STM32 Nucleo board
	Solution
	Further problems with the Autodetection
	CoreSight Access Tool

	OpenOCD
	Motivation for OpenOCD
	Brief Overview
	Simple setup
	Interface file for the onboard adapter
	ThunderX's configuration file

	Evaluation
	STM32
	JTAG level
	Data input
	DAP level
	Clock speed

	OpenOCD
	OpenOCD's limitations and boot problem
	JTAG and DAP API

	Conclusion
	Appendix
	Failed autodetection log
	Successful autodetection log
	MEM-AP memory read
	Register read failure in OpenOCD
	OpenOCD to STM32 connection log

	Bibliography

