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Abstract
Firmware, the code running before the operating system starts, is a vast and
interesting subject. Unfortunately, most knowledge in the field is owned by
silicon vendors and not openly available, hindering research projects like Enzian.
A large amount of hard-to-maintain, proprietary legacy code makes it difficult to
extend it for research purposes, and poses a risk in technical debt and security.

The Systems Group at ETH Zürich is developing the open Enzian research
computer. The vendor-provided firmware is proprietary, thus in conflict with the
openness principle, as well as difficult to adjust for research purposes. Thus, the
project of creating a new firmware was initiated. Continuing the work started
by the two prior theses, the original goal of this thesis was to integrate the two
previously developed components and create a working firmware stack.

In the process of writing this thesis it became evident that this endeavor would
be much more involved than initially anticipated. The numerous problems that
arise from a project of this nature will be explored. This thesis makes progress
towards a production ready firmware stack and aims to be a guide for how to
efficiently proceed with this project.
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1 Introduction
Long ago, hardware and software were developed in harmony. Then, everything
changed, when firmware was invented. At the time computers were becoming
more sophisticated, hardware complexity increased dramatically. Relying on
operating system programmers to implement every hardware detail for every
chip in existance became unsustainable, portability was needed. The mostly
proprietary nature of silicon1 development at that time, and the lack of stan-
dardization gave birth to what we call firmware. Code that runs before any
user supplied code (like an operating system), that is needed to make different
machines look similar enough, so that an operating system does not have to
know about every last intricacy of the system it is running on [3]. With this
abstraction, hardware and software became separated. Hardware vendors would
supply firmware with their chips, and operating systems would only need small
adjustments to work on the platform. They would be developed separately.
The hardware complexities would only be documented poorly or not at all. The
firmware abstracts it, no need to worry about it.

In the modern day, firmware has become ubiquitous. Every modern ‘PC’ has
a UEFI (Unified Extensible Firmware Interface)[15]2, which to the normal user
has become the default. ‘That is where I configure my hardware’. What is not
well known, is how much code actually runs, before the familiar configuration
interface even appears on the screen. Going even further, why is all this even
needed? Should the operating system not be facilitating the hardware? This
question cannot be answered easily. On x86 platforms, it has effectively become
mandatory to run a UEFI implementation. Virtually every operating system
expects it, and will not run without it3.

The Enzian research computer, developed at the Systems Group at ETH Zürich,
uses an Arm-based CPU. Arm chips were traditionally used in embedded envi-
ronments, where the hardware and software usually are still developed together.
There is a standard for how to develop firmware for Arm platforms, the ATF
(Arm Trusted Firmware, or Trusted Firmware-A)[2]. In theory, this firmware
could be loaded right after reset, perform hardware initialization and then load
a Linux kernel to jump to it. In practice, this is not the case. The firmware for
the Cavium ThunderX (the CPU used in Enzian) consists of three stages: The
proprietary Cavium BDK (Bringup and Diagnostics Kit), an ATF and a UEFI
implementation.

Why did this happen? The coreboot project [7] calls this the “set and forget”
model of developing firmware. There is some existing code, that already provides
most of what is needed for a new platform. Vendors now take this old code of
theirs and just make it part of the new firmware, with minor modifications. The
BDK performs many different functions (refer to Section 3), some that should

1Silicon is used to refer to chips.
2Colloquially often still referred to as BIOS
3At least not with non-trivial modifications.
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be part of the ATF, some of the UEFI, and some that should not be done
in firmware at all. Later stages then reconfigure the parts that are ‘wrong’.
Many stages each doing what they think is correct, with no clear separation of
concerns, together with swaths of legacy code stitched together makes firmware
hard to understand, maintain and extend, especially for someone outside of the
vendor, even when given the proprietary source code.

As the Enzian is meant to be an open research platform, every part of it should
be open. The closed source nature of the vendor-supplied firmware goes against
this principle, hence it was decided to create a new, open firmware stack to
allow sharing, and enable easier integration of new features.

The old firmware stack consists of three components, the Cavium BDK, an
ATF and an UEFI implementation. For the new firmware stack, the plan was
to eliminate the proprietary BDK, and rebuild the other two components from
the ground up, leaving only code based on open source projects.

Previous work was conducted on this project (see Section 2.11), separately for
the two components ATF and UEFI. The initial goal of this thesis was to unify
them, fix existing issues and implement missing features to create a working
firmware image that can boot into Linux.

Working on this problem however has revealed that the difficulties regarding
developing this firmware were much greater than anticipated.

Developing directly on the hardware brings challenges. While the programmer
has total freedom, this means they also have the freedom to commit mistakes
without being made aware of them. A typo in EL34 code has the potential to
cause devastating consequences. Address zero could become a valid memory
address, hardware devices could be initialized with invalid data, or a stack
overflow could cause crashes and hangs that look inexplicable at first glance.
All of these happened while working on this thesis.

These difficulties make developing firmware a slow and tedious process. Still,
this can be overcome with sufficient time and dedication. The real problem is the
lack of knowledge. The vendor has developed the hardware. They know every
little detail of it, every quirk, every edge case. Even the 2000 page hardware
manual, while seeming highly detailed and useful at first, is lacking informa-
tion in virtually every section. This makes it nearly impossible to create new
firmware without reusing a lot of the existing code.

This thesis analyzes the existing, old firmware stack, specifically the BDK. It
then explores how this code can be reused in the creation of a new firmware.
This method is applied to implement stable DRAM configuration support for
all possible speeds. Some non-obvious bugs in the existing code are identified
and fixed. Lastly, a way this project can proceed efficiently is described.

4The most privileged mode of execution on Arm processors, see Section 2.10.1
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2 Background
2.1 Enzian
The Enzian is a research computer developed by the Systems Group at ETH
Zürich [6]. It aims to be an open, extensible and flexible platform for systems
software research.

Enzian has two NUMA (Non-Uniform Memory Access) nodes. Node 0 is a
Cavium ThunderX CPU, node 1 is a Xilinx FPGA (Field Programmable Gate
Array). The ThunderX supports a cache coherency protocol, the CCPI™ (Cav-
ium Coherent Processor Interconnect), for dual-node setups, which the ECI
(Enzian Coherent Interconnect) is based on.

2.1.1 ThunderX

The ThunderX (CN88XX) is a full featured Arm ARMv8.1 based CPU with
48 Processing cores intended for use in datacenters. It supports up to 128GiB
of DRAM (Dynamic Random Access Memory), 16MiB of level 2 cache, up
to 6 PCIe (Peripheral Component Interconnect Express) interfaces, and up to
8× 10Gb/s or 2× 40Gb/s ethernet connections [5].

2.1.2 BMC — Board Management Controller

The BMC is a small Arm CPU on the Enzian motherboard. It is in charge of
power management, and can provide configuration to the firmware running on
the ThunderX via EFRI (Enzian Firmware Resource Interface).

By connecting to the BMC of an Enzian via SSH or serial console, manual
control about the mentioned aspects is possible. Additionally, firmware can
easily be flashed to the CPU.

2.1.3 EFRI — Enzian Firmware Resource Interface

EFRI is a protocol used for ThunderX - BMC communication. It allows software
running on the main CPU to power down the board via an SMC (Secure Monitor
Call), or allows providing configuration values such as DRAM speed to the
firmware from the BMC [6].

2.1.4 FPGA — Field Programmable Gate Array

The FPGA in Enzian is connected to the main CPU by ECI, and by a PCIe
link. This enables it to be used as a secondary NUMA node, or as an arbitrary
peripheral device.
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2.2 TWSI — Two Wire Serial Interface
TWSI is a derivation of I2C (Inter-Integrated Circuit), which is a serial com-
munication bus specification. The ThunderX uses it to communicate with a
number of hardware devices, most notably the DRAM controller.

On Enzian there are six TWSIs. They can be used to send read and write
commands to connected devices. This works by writing the device address,
flags and (for write operations) optionally a value into the TWSI hardware
register(s), then waiting for the operation to complete and finally reading the
result out of said register(s). For details, see the ThunderX manual section
34 [5].

2.3 DRAM — Dynamic Random Access Memory
DRAM is volatile5 memory. It is an integral part of modern computers, as it
allows a machine to use large quantities of reasonably quick to access and cheap
memory. Usually, the programmer as well as the user expects the memory to
work consistently. After writing a value to address X, reading from that address
should yield back the same value, until it is overwritten again. This behavior
however is not trivial to achieve. DRAM training or configuration is the process
that discovers the correct parameters for the DRAM controller and configures
it accordingly. This has to happen in the early stages of booting, as without it
memory cannot be used.

2.3.1 Structure

Modern memory modules (DIMMs - dual in-line Memory Modules) are orga-
nized into logical groups called ranks, which in turn consist of multiple physical
chips containing a number of banks per chip. To access a memory location, the
memory controller issues a command to the respective module on a data line.
The difficult part is to properly interpret the output from the memory chip that
comes back.

2.3.2 Training

As the physical chips on a module are at different distances from the memory
controller, a command for a chip that is farther away will have a larger delay
before its response can be read. This delay has to be determined in a process
called read/write-leveling. Additionally, the analog-digital conversion is not
trivial either. The correct reference voltage (which determines if the signal is
encoding a 1 or a 0) is found in a process called Vref training.

This is a very short overview omits much of the complexity that the DRAM
training process has. Alessandro Legnani’s thesis goes into great detail about
DRAM structure and DRAM training [10]. Refer to its sections 2.6 and 4.

5volatile = loses data when power is removed
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2.4 ARMv8 Internals
2.4.1 Exception Levels

Figure 1: AArch64 Exception Levels [1]

In AArch64, the processor can oper-
ate in four different exception levels
called EL0 - EL3 (Exception Level).
The exception level determines the
level of privilege. The most impor-
tant part of this is which system reg-
isters and memory regions are acces-
sible. EL3 is the most privileged ex-
ecution mode, while EL0 is the least
privileged.

Usually, EL3 is used for low level
code like power management (acces-
sible via SMCs), EL2 runs a Hyper-
visor for CPU Virtualization, The OS
Kernel runs in EL1, and user code in
EL0.

When taking an exception, the exception level can increase (become more priv-
ileged), or stay the same. This allows low-privilege code to access functionality
by more privileged software layers [1].

2.4.2 Security States

AArch64 supports yet another method of privilege control: Security States.
When running in EL2, 1 or 0, the processor can be either in Secure or Non-
Secure state. Memory regions can be flagged as secure to only be accessible in
the Secure State [1]. This feature is currently not in use by Enzian.

2.5 ATF — Arm Trusted Firmware (Trusted Firmware-A)

“Trusted Firmware-A (TF-A) provides a reference implementation
of secure world software for Armv7-A and Armv8-A, including a
Secure Monitor executing at Exception Level 3 (EL3)”[2]

ATF, officially called “Trusted Firmware-A” (TF-A), but often still referred
to under its former name, “Arm Trusted Firmware”, is an open source boot
firmware implementation for Arm CPUs, published and developed by Arm. It
is responsible for initializing hardware, and installing a Secure Monitor to handle
SMCs, then passing control over to a UEFI implementation, an OS or another
payload [2].
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A large part of ATF are reusable libraries that implement many common fea-
tures needed in CPU firmware. Notable examples of existing features are:
XLAT, a library that implements memory address translation helpers and fa-
cilities to load the later boot stages. Alessandro Legnani’s thesis [10] goes into
great detail about this.

When implementing firmware for new devices, the developer is encouraged to
use the plethora of features ATF offers, and looking at platform specific code
for different, but similar chips to derive code for the new platform.

The responsibilities of ATF are similar to those of the BDK. For a more detailed
description, refer to Section 2.8.

The ATF defines a multi-stage boot process. These stages, and how they fit
into the full Enzian boot process is described in Section 2.10.

2.6 UEFI — Unified Extensible Firmware Interface
UEFI is the last firmware stage, and is responsible for loading user level soft-
ware, such as an operating system. The reference implementation of the UEFI
specification is TianoCore EDK II (Efi Development Kit 2) [14]. Both the old
and the new UEFI implementation for Enzian are based on EDK II.

In UEFI, drivers are implemented to support different hardware components,
and UEFI runtime services are installed to provide functionality to the OS, such
as access to hardware time measurement.

2.7 Coreboot
Coreboot is an open source boot firmware implementation for various devices [7].
It shares most of the philosophy behind this Enzian Firmware re-implementation,
namely separation of concerns between boot firmware and higher-level software,
and minimal responsibility of the boot firmware.

How is coreboot relevant to this thesis? Coreboot has support for the ThunderX.
Because at the time of starting this thesis, the boot process using the new
firmware stack was slow and unreliable (see Section 2.11.1), especially because of
DRAM initialization, coreboots implementation was consulted to find a possible
alternative method to configure DRAM.

It was discovered that coreboot includes part of Cavium’s BDK code. This
version of the code is very stripped down, only including a handful of the features
of the original BDK. The part that initializes DRAM was almost identical to that
in the code supplied by Cavium. How these findings were applied is described
in Section 4.3.3.
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2.8 Currently used Firmware Stack
Enzians current firmware stack consists of three components: The Cavium BDK,
ATF and EDK II (Efi Development Kit 2) based UEFI. Both the ATF and UEFI
implementations are based on unknown, old versions of the upstream ATF and
EDK II codebases. This firmware stack was provided by Cavium to the Systems
Group, without any version information or history. A number of modifications
were made to support different requirements of Enzian.

In this firmware stack, a lot of responsibility is shared. Part of hardware initial-
ization is done in the BDK, part in the ATF, and part in UEFI. Some devices
are also initialized multiple times. It is difficult to discern how any single ini-
tialization objective is accomplished.

2.9 Desired Firmware Stack
The overarching goal is to create new firmware images from scratch (using up
to date ATF and EDK II codebases) to replacing the Cavium supplied firmware
stack. The BDK will not be used in the new firmware stack6. In this new stack,
responsibilities should be clearly separated. The policy at the time of writing
is, ATF should only run initialization logic that must be run before UEFI. This
primarily refers to code that has to run at EL3, such as DRAM initialization.

While the old firmware stack included many features for other Cavium plat-
forms, the new firmware stack will solely support the ThunderX CPU used in
the Enzian system. Features of the ThunderX not used by Enzian, such as
DDR3 support, are not considered.

2.10 Boot Process
The ThunderX reset procedure is described in the BDK documentation [4]:

• After reset, the chip starts executing instructions from an internal secure
ROM at 0x87d000000000 ( RVBAR_EL3 )

• This code loads 192KiB from flash into the L2 cache at physical address
0x1000000

• For non-trusted boot, code is loaded from offset 0x20000 in flash, for
trusted boot this is 0x50000

• The CPU jumps to 0x1000100

The first boot firmware stage is loaded into the so called scratchpad (a spe-
cific chunk of memory) in the L2 cache. This is mandatory, because before
DRAM initialization is complete, memory cannot be used. The first stage of
the firmware that is loaded here has to lock the scratchpad area such that no

6At least not in its original form. Parts of it, like DRAM related code, might be used in
the new firmware stack, and it will remain as a reference point.
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cache line can be evicted, then run DRAM initialization. After memory is work-
ing, the scratchpad can be unlocked, and execution can continue by loading later
boot stages into memory.

Previously, the code that is loaded into the scratchpad was from the BDK. It
would do its job as described in Section 3, then hand over to the ATF. In the
new stack, the ATF is responsible for platform initialization, thus its first stage
is loaded into the scratchpad.

2.10.1 ATF Stages

The ATF defines a multi-stage boot sequence. The stages are named BL1, BL2,
BL31, BL32, and BL33. This sequence is universal for all platforms that use
ATF, and is more of a guide how one can implement firmware [2]. In this thesis,
the focus is put on what each stage is used for in Enzian’s new firmware stack
specifically.

ATF also supports distinction between a trusted and non trusted boot, as well
as running a trusted OS in a secure execution state. As these features are
currently not in use by Enzian7, details about this have been omitted in the
following explanation. See Figure 2 for a visual representation.

• BL1 runs at EL3 and is responsible for minimal platform initialization
required by the later stages, as well as loading the next stage: BL2. It
runs from the L2 cache until DRAM is initialized. As it is loaded by the
internal ROM code, its size is limited to 192KiB.

• BL2 runs at EL1. Its task is to load all later stages into memory.

• BL31 runs at EL3. It has the same privileges as BL1, just without the
binary size and memory restrictions. At this point, platform initialization
requiring EL3 privilege is finished.

• BL32 is an optional stage running at EL1. It is meant to house a secure
OS. At the moment of writing, this feature is not used by Enzian.

• BL33 is the last firmware stage, running at EL2. It can either be an OS
bootloader, or (as in Enzian’s case) an UEFI implementation, which is
later used to load the OS.

It is worth to mention that the ATF implementation that Cavium provided for
the Enzian is highly customized. As it runs after the BDK, it has a different
execution path. It includes a ‘BL0’ stage8 that takes over control from the BDK
and loads the devicetree.

7Enzian is a research system, so unprotected access to parts usually locked away is desired.
8found in enzian-atf/plat/thunder/bootstrap/
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Figure 2: Boot Process under ATF on Enzian

2.11 Previous Work & Current State
Two Bachelor’s theses have already been written about this topic. ‘Trusted
Firmware for a Research Computer’ [10] by Alessandro Legnani concerns it-
self with the ATF, and ‘Boot Firmware for Heterogeneous Systems running
Linux’ [13] by Axel Montini with UEFI.

2.11.1 ATF

The ATF implementation [10] has the following features:

• Serial (UART) initialization

• EFRI initialization and EL3 service installation

• Timer (GTI) initialization

• GIC initialization

• PSCI implementation (partial)

• MMU setup

• Reimplementation of DRAM training

The thesis focused on the DRAM training code. It is able to boot into the next
stage, namely UEFI, albeit unreliably. Often the boot process hangs or crashes,
at a few different locations. These include trying to switch to execution from
DRAM after training, installing runtime services, and next stage loading.
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The DRAM code works in principle, but not for the highest speed of 2133MT/s.
Also, the DRAM training takes several minutes to complete9 each boot, drasti-
cally reducing the speed at which changes can be tested.

An open question remains about the DRAM code. The code of the new im-
plementation is an order of magnitude smaller than that of the BDK. It im-
plements lots of features not used by Enzian (different DIMM configurations,
DDR3, etc.), but even when taking that into consideration, it seems much more
complex and sophisticated than the new implementation. The issues that the
new implementation has could be caused by unknown factors, such as hardware
intricacies only known to Cavium, or a simple lack of accuracy.
The real reason is hard to determine. One fact discovered while working on this
thesis is that the BDK uses a lot of10 pre-defined configuration values, which look
hardcoded after manual testing, to train and configure DRAM. These missing
precomputed values could be what is making the difference between the working
BDK code, and the only partially working new code.

Because of the lack of good testing infrastructure (no Linux boot possible),
there might be a number of undiscovered critical bugs in the new ATF code. In
Section 4 some that were discoverd during the work on this thesis are described.

2.11.2 UEFI

The UEFI implementation [13] has the following features:

• PCI driver (partial)

• SATA driver (partial, broken)

• Show Boot Menu

It currently assumes that the ATF

• Initialized memory

• Initialized PCIe, SATA and Serial

There was an attempt to describe Enzian’s hardware in ACPI tables, though
without an OS to test them, this did not produce tangible results.

Even with the old BDK/ATF, the UEFI currently cannot boot Linux. This is
mainly due to the SATA driver not working. In general, the missing coordination
between the UEFI and the prior stages makes it difficult to develop working
UEFI functionality.

With the new ATF, PCI and SATA do not work at all. This is due to the
ATF not initializing SATA, and not configuring PCI in the way that the UEFI
requires.

9In the thesis, an average time of 4 seconds (!!) is stated for the DRAM initialization
process. These measurements could not be reproduced.

10about 50

14



After the required ATF features are implemented, the UEFI can be updated
to enable Linux boot. This should not be that difficult, as the EDK II already
implements most of the required functionality. This prediction however does
not take into account potential unforseen roadblocks.
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3 The BDK

As mentioned in the introduction, the Cavium BDK is the first firmware stage
used by the vendor supplied firmware stack for the ThunderX platform. Besides
the 2000 page hardware manual [5], the Systems Group has access to the source
code of all the firmware parts, including the BDK, albeit under NDA. This
section explores what it does, how it does it, and the problems that come with
it.

3.1 Purpose
The BDK documentation [4] defines the role of BDK as follows:

The “Bringup and Diagnostic Kit” (BDK) is a set of executables
and scripts designed to ease the bringup of new hardware based
on Cavium’s line of THUNDERX processors. To ease development
and increase maintainability, diagnostics are written in a high level
scripting language, Lua. […]

Features of the BDK

• Simple menu driven interface for testing many I/Os.
…
• GUI based interactive script debugger.
• Lua RPC over serial, tcp/ip, PCIe, or EJTAG.
• Remote booting over PCIe and EJTAG.

The BDK is many things. It is the first stage boot firmware that is loaded
from ROM (Read Only Memory), it initializes hardware and configures DRAM.
Beyond that, it provides a BIOS like interactive interface to configure various
aspects of the hardware, and allows Lua scripting in every stage of the boot
process.

The Lua support is quite involved. Virtually every API function of the BDK,
including hardware initialization routines are exposed to the Lua environment.
One included App even features a text-based graphical interface with a Lua
interactive REPL and debugger, all running within firmware constraints.

The side effect of having so many features in the BDK is high complexity. The
whole BDK has more than a million lines of C code11. That, in addition to
the scarcity of the documentation, and missing code history makes it hard to
add new features or understand how even just parts of it work. Note that this
comment refers to the inner workings, not the public API.

11This number was obtained by using the scc tool by boyter on GitHub in the BDK codebase.
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The BDK is meant as a development kit, on top of which Cavium customers
can build their own functionality. The documentation mostly describes how the
public API works, and how to develop on top of it. Creating custom firmware
was clearly not intended to be done by customers.

3.2 Structure
The BDK consists of a number of parts [2].

• libbdk-arch : Architecture abstractions, especially CSRs (Configuration
and Status Registers)

• libbdk-dram : Code related to initializing DRAM

• libbdk-hal : Hardware abstractions (mostly initialization code)

• libbdk-lua : Lua scripting library

• libbdk-os : Operating system like abstractions

• libbdk-boot : The application code including the interactive menu and
Lua environment

Users of the BDK are supposed to write ‘Apps’ that utilize these libraries.
An App can then be run from the interactive environment, or burned to the
beginning of the flash image so that it executes after reset [4]. Writing apps is
fairly straightforward, as the BDK offers a rich programming environment (see
Section 3.3).

The current Enzian BDK image includes four apps:

• boot : Runs after reset, loads the next stage, by default this is init .
Lets the user choose to run setup or diagnostics .

• init : Performs hardware initialization and tries to chainload the ATF
image, falls back to diagnostics .

• diagnostics : Runs the interactive lua environment.

• setup : Provides an interactive configuration interface. Allows changing
hardware configuration and save it to flash to persist it.

A BDK image is a FAT formatted filesystem image. Apps are added to the image
as binary files, the assembly of the Enzian image is performed by a shellscript12.

12 bdk/bin/bdk-create-fatfs-image
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3.3 Programming Environment

A plethora of high level features is offered by the BDK [4].

• A C standard library implementation, powered by newlib13

• Multicore and Thread support

• Simple filesystem abstraction

• Network interface abstraction

The libc implementation newlib includes functions like malloc and free ,
which allow BDK apps to dynamically allocate and use heap memory, some-
thing that is usually refrained from in firmware for predictability and stability
reasons14.

The threading system is implemented using a ‘low overhead cooperative’ sched-
uler. Threads are scheduled using all cores in a round-robin fashion whenever
a thread yields by calling bdk_thread_yield() [4].

Different network interfaces on the ThunderX are abstracted by a simple com-
mon interface that allows enumerating interfaces and ports. Receiving and
sending packets is done by one function respectively, allowing easy implemen-
tation of transport layer protocols.

This makes programming a BDK application similarly easy as a userspace one.
Heap memory can be allocated and freed at will, tasks can run in parallel using
the cooperative scheduler. ROM, DRAM, UART and PCIe devices can be read
using libc APIs like in POSIX, even arbitrary temporary files can be created
and manipulated using the filesystem abstraction [4].

3.4 Configuration & Devicetrees
The BDK has a number of configuration parameters that are specified for each
supported platform (the ThunderX or CN88XX being one of those platforms).
They describe various hardware options, such as QLM (Quad Lane Module)
configuration, TWSI addresses of some devices, and DRAM parameters.

These parameters are stored in the Devicetree format originally developed by
OpenFirmware15. Devicetrees are well known to Linux developers. Linux uses
them to avoid the need to hard-code platform details into the kernel. Instead,
a platform can provide a Devicetree, which specifies the available devices, iden-
tifies the platform and configuration values [11].

13https://www.sourceware.org/newlib/
14Many opinions supporting this sentiment can be found in various online fo-

rums; A writeup on drawbacks that using heap memory brings can be found here:
https://akhileshmoghe.github.io/_posts/embedded/firmware/memory_allocation

15https://www.openfirmware.org/Open_Firmware
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/{
compatible = "nvidia,harmony", "nvidia,tegra20";
interrupt-parent = <&intc>;

memory {
device_type = "memory";
reg = <0x00000000 0x40000000>;

};

soc {
compatible = "nvidia,tegra20-soc", "simple-bus";

intc: interrupt-controller@50041000 {
compatible = "nvidia,tegra20-gic";
interrupt-controller;
#interrupt-cells = <1>;
reg = <0x50041000 0x1000>, < 0x50040100 0x0100 >;

};
};

};

Figure 3: Part of the Devicetree used by Linux for the Nvidia Tegra Board [11].

/ {
cavium,bdk {
ENZIAN = "1";
MULTI-NODE = "2";

QLM-AUTO-CONFIG = "0";
QLM-MODE.N0.QLM0 = "XLAUI_1X4";
QLM-MODE.N0.QLM1 = "XLAUI_1X4";
QLM-MODE.N0.QLM2 = "PCIE_1X4";
QLM-MODE.N0.QLM3 = "SATA_4X1";
QLM-MODE.N0.QLM4 = "PCIE_1X8";
QLM-MODE.N0.QLM6 = "PCIE_1X4";
QLM-MODE.N0.QLM7 = "PCIE_1X4";
<...>

};
};

Figure 4: Part of the Devicetree used by the BDK for Enzian v3. Source: BDK
/boards/enzian_v3.dts
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Although the BDK borrows the ‘Devicetree Source’ and ‘Flattened Devicetree’
file formats as specified in the Devicetree specification [8], the files found in
the BDK source tree have little resemblance to the rest of the spec. Compare
the excerpts from a devicetree used in Linux (Figure 3) and the one for Enzian
used in the BDK (Figure 4). The BDK essentially uses the format as a key-
value store for arbitrary configuration values. This means that keeping these
Devicetree files around in the new firmware is not a requirement, as they carry
no meaning beyond the BDK.

Configuration values are defined as string-string key-value pairs. Some keys are
parameterized, for example QLM indices (see Figure 4). The information about
value types (integer, string, …), default values, ranges (minimum, maximum
for numeric values) and available parameters are all stored in a large lookup
table16. Parameters are applied using C string manipulation functions, namely
sprintf that takes the string format specified in the lookup table and inserts

the parameters into it to get the final key string. This key is used to look up
the value in the list of loaded key-value pairs. The value is cast to its type after
its location was determined.
Instead of relying on the programming language features, this system completely
circumvents any security mechanisms like type-checking. This makes it highly
bug-prone, as well as non-transparent for anyone trying to analyze it.

3.5 Critique
The BDK certainly is a remarkable piece of software. Writing applications on
top of it feels like writing a userland application for an operating system. This
has obvious advantages: Bringup sequences are incredibly easy to customize,
and extensive diagnostic capabilities are available at the lowest level of opera-
tion. On the other hand, all of this functionality is not really needed. After a
boot flow has been established, it rarely needs to be changed. Even for a research
computer like Enzian, it is unlikely that someone would need to do something
like changing frequency parameters for PCIe slots at runtime. These adjust-
ments should be done either by flashing a custom image, or through automated
systems, like passing parameters to the firmware via EFRI.

While a high-level understanding of the BDK can be achieved without a large
time investment, this is not at all the case for the low level inner workings.
This thesis is about implementing a new, open firmware stack. Untangling the
web of interdependent modules, deciphering the various macros in the code and
reasoning about the flow of execution are just some of the challenges when trying
to leverage the BDK, which is required, as the manual [5] is lacking information
(see Section 6.2 for details).

The sheer size and swath of unnecessary features makes the BDK a bad fit as
a firmware component. That is on top of the fact that Arm platforms have a

16see bdk/libbdk-hal/bdk-config.c
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standardized way of doing firmware, the ATF, which the BDK precedes in the
Cavium stack. Still, the BDK has the undeniable quality of ‘it works’, which
cannot be said for the new stack that is in development. It will continue to be
an important source of knowledge and code for the Enzian platform, at least as
until the new firmware stack has been fully implemented and battle-tested for
a sufficient time.
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4 Implementation
The initial goal of this thesis was to take the previous work on the new ATF [10]
and UEFI [13] implementations, fix remaining issues and add missing features
to ultimately enable the creation of a working firmware image that is able to
boot into Linux.

4.1 Unified Firmware
For the objective of creating an easy to use method of building and extending
the new firmware stack, a new repository17 was created. It includes the new
ATF and UEFI repositories as submodules and offers a simple Makefile to build
the firmware. The build systems and scripts of the two subprojects have also
been surveyed and improved to enable new developers to get into extending
them easily.
An effort was also made to improve editing experience, with working support
for modern development tools such as clangd.

The documentation can be found in the respective repositories.

4.2 Portability
The original firmware stack was built to support multiple of Caviums platforms.
It includes a lot of configuration and code that Enzian does not use or need.
The new firmware stack is being developed from the ground up, instead of on
top of the existing one. While it reuses parts from the old stack (and of course
the base ATF and EDK II), it has its own structure.

Implementing each and every available feature the ThunderX has to offer would
take years. Enzian version 3 is a fully specified system18 and is unlikely to
change in the near future, even though a version 4 is on the ‘wishlist’ frequently
mentioned by members of this group. The current Enzian does not utilize the
trusted boot features that the ThunderX offers, has a static device configuration
(PCIe, SATA, …) and only uses a specific type of DDR4 DRAM modules.

The primary goal is to get the new firmware stack to a point at which it can
be used productively, not to support as many features as possible. As such,
shortcuts are taken to reduce the time needed to achieve this goal. Configuration
options will be limited to those proven to be useful, like DRAM speed. A lot of
others, which the BDK had specified in its Devicetree files (see Section 3.4) will
be eliminated or hard-coded. Firmware support for unused features will not be
provided.

17https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2024-bsc-thmeyer/enzian-unified-
firmware

18see https://enzian.systems/enzian-spec/
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The rationale for this decision is that when a new version of Enzian might
come along, it will most probably change the CPU as well as other components.
In that case, the firmware will need to be largely rewritten, regardless of how
portable the firmware for version 3 is.

4.3 DRAM Initialization and the BDK
When assessing the state of the new firmware stack, it was discovered that the
from-scratch implemented DRAM training procedure implemented in the new
ATF [10] was unreliable and slow.
It must be mentioned here, that it is an incredible feat to create a training algo-
rithm that produces even just somewhat usable results. The DRAM controller
of the ThunderX is complex, and there is not much documentation for it. The
portion of code in the BDK that is responsible for DRAM initialization is about
ten times as large as the new implementation, yet the small codebase was able
to demonstrate tangible results. In the future, this code could be expanded
upon to create a fully independent training and initialization process.

For now, it was decided that this would be too difficult of an endeavor. Another
possibility was considered, namely extracting the code responsible to initialize
DRAM from the BDK, and put it into the new ATF implementation as another
way of handling DRAM. This would prove to be a difficult task in and of itself.

Fortunately, the DRAM initialization routine in the BDK is somewhat self-
contained. There is one function
bdk_dram_config (int node, uint64_t speed) which takes a NUMA node19

and a clock speed20. This function contains the full configuration code. If all
its dependencies are present, this should enable correct DRAM initialization.

4.3.1 Challenges of the BDK

Cavium uses their BDK not just for the ThunderX, but also a number of other
devices21. Also, it seems to be a Swiss Army Knife of a tool. It is a lot more
than just a boot firmware. Besides the user facing functionality, it has a lot of
developer features as well.

The BDK houses a dynamically typed string based key-value configuration store
mechanism, three different logging systems, and a plethora of smaller utility
functions and helper libraries. Basically every part of the code uses these.
Naturally, the ATF also provides similar functionality. This has to be considered

19Node 0 is the main CPU, and possible DRAM attached to the FPGA is not initialized
here, so at this time, 0 is hardcoded.

20Note that the clockspeed passed to this function is not MT/s, but rather the actual
hardware clock speed. There is a mapping between MT/s and clock speed which can be found
in bdk/libdram/libdram_config_load.c , but this has not been implemented into the ATF
yet.

21This is apparent when looking at the source code, lots of references to other platforms can
be found.
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when trying to integrate the code. Because of strict size restrictions22 and code
duplication concerns, as much as possible of the BDK code should be eliminated
and replaced by ATF alternatives.

A challenge during the analysis of the BDK code was its build system. It uses
its own custom way of handling dependencies, and instead of detailed headers
opts for just one large header containing every interface used in it. This made
it difficult to see how different parts of the BDK are connected.

There was yet another concern about including BDK code in the new ATF. That
code is under NDA. That means it cannot be published openly without first
getting permission from the vendor. Later it was discovered that the relevant
parts are already publicly available as part of the coreboot project.

4.3.2 First Approach: Static Library

The first idea on how to reuse the BDK’s code was to create a static library
from it, that would only contain the symbols needed by the DRAM part. For
this, two approaches were considered.

Approach one was to take object files from the BDK build process that seemed
like they were needed, and try to strip them of unneeded symbols, then link
against them in the ATF build process.

The linking itself was yet another problem. The sophisticated ATF build system
is based on thousands of lines of make code, and does not have an obvious way
to link a static library. The only way to achieve this that was discovered is to
manually add a linker flag to the BL1, which makes it link against the desired
archive file.

It was quickly discovered that this would not be feasible. There are hundreds of
build artifacts from the BDK, with no clear indication of which of them contain
relevant symbols. There is a build artifact with the name libbdk.a which
(after investigation) seemed like it shoud contain all BDK symbols. Different
object file analysis and manipulation tools from the GCC toolchain were used
to try and filter out unused symbols, but to no avail. The resulting files would
always have undefined references or the final image size was too large. Note
again, this code has to be included into the BL1 stage of the ATF, which has
a size limit of 192kiB, and a good chunk of it is already occupied with existing
code.

Next, the ‘App’ functionality of the BDK was explored. The BDK allows the
creation of applications that can be executed from the interactive environment,
or as part of a boot procedure. The rationale was, if the code for the app
only references the bdk_dram_config function, its resulting archive file would
contain only the needed code. This approach was stopped in its tracks, as there
is no proper way to use the built app as input to another build process. Not an

22At least in the BL1 stage
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archive, but a binary image is created, which is probably meant to be jumped
into directly instead of being compiled into another program.

The main problem here was binary size. Even the most stripped down version
of the mentioned libbdk.a , that had missing references to required functions,
was by itself larger than 192kiB. Link-time-optimization was considered as a
solution for this, as it should strip out any last bit of unused code to reduce the
size of the image. However, even though the ATF build system has a built in
flag to enable it, it led to various inexplicable issues, so this was not an option.

It was clear that this approach would not lead anywhere. Additionally, the
idea of including a large binary object in the source tree of the new ATF was
non-ideal in the first place. The source code for DRAM initialization has to be
compiled directly into the BL1 from source to allow more aggressive, manual
optimization.

4.3.3 Second Approach: Leverage Coreboot

Somehow, the DRAM relevant source code had to be included into the new
ATF. As already described, extracting code from the giant BDK source tree
that was provided to the systems group by Cavium was not an option.

An idea came to mind. Coreboot (see Section 2.7) is an open source CPU
firmware project with support for the ThunderX. Surely, it has to include code
to configure DRAM properly. Indeed it does, but this code is non other than
that of the BDK.

The coreboot project includes vendor supplied code for a few platforms, Thun-
derX being one of them. The part of the BDK code found in the coreboot source
tree is very similar to the full source the system group has access to, just that
it only includes the parts that are actually in use by coreboot. Besides DRAM,
there is code for PCIe, USB, NIC, etc. Here, coreboot apparently decided to
reuse the hardware initialization code already present instead of re-implementing
it. For the mission at hand, only the DRAM part is needed.

Discovering that the coreboot project just re-uses the BDK code again strength-
ened the assumption that implementing this code from scratch would be a non-
worthwhile effort, at least as long as the goal is to create a working system. The
topic of DRAM training is one that deserves its own thesis, or even multiple
theses.

Even if most of the discovered code was the same as the original, there were
a number of modifications made by the coreboot team to make it usable for
their project. This came in handy, as a large chunk of work sifting through files,
removing unneeded code and making it more stand-alone was already done. It
seemed very promising to try and integrate the modified BDK files.
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4.3.4 Integration Issues

These files now live in the new ATF repository under plat/enzian/bdk/ .
A great deal of work still had to be done. After including the files into the
ATF build system23, naturally, a great number of compilation issues emerged.
Dependencies on coreboot specific functionality were a problem, these had to
be replaced by ATF equivalents.

Notably, TWSI functionality (which is needed to talk to the DRAM controller)
is implemented by coreboot directly, and the existing ATF equivalent works in
a different way than what the BDK code expects. To resolve this issue, the
TWSI code was taken from the original BDK source.

Aside from many waves of compilation errors, an effort was made to fix all
compiler warnings generated by the BDK code. In its current state, the ATF
code with the BDK included compiles without any issues or warnings. This was
a lengthy process. Unused files had to be removed on a trial-and-error basis,
name clashes had to be resolved. A number of utility functions were eliminated,
as equivalents are provided by the ATF. The three different logging mechanisms
used by the BDK code were replaced by or aliased to ATF logging functions to
allow easy logging configuration across the whole codebase.

One large blocking issue was again binary size. After fixing all the mentioned
issues and removing a number of redundant code, the BL1 image would still
exceed the size limit of 192kiB. Initially, in the build configuration the size
limit was set to just 131kiB, so the first action was to increase it to the full
192kiB available24. Even then, the image would exceed the limit. Link time
optimization would not work, so that was not an option to reduce the size. A
compile-time switch to select which DRAM initialization method (from-scratch
or BDK) should be used was added, but did not help reducing image size. The
compiler already optimized out the unused code. Somehow the amount of code
had to be reduced.

4.3.5 The BDK Config Mechanism

One puzzling aspect about the BDK code throughout the work up until this
point was the config mechanism. It allows access to the Devicetree of the board
currently in use. The values are loaded from the ‘.dtb’ (device tree blob) file spe-
cific to the current board25. The Devicetree specifies options for different parts
of the system, including QLM modes, TWSI addresses, and DRAM controller
parameters.

23This fortunately was quite straightforward, as this task just consisted of listing them as
additional sources for the BL1 in the relevant Makefile .

24Actually 188kiB, as the first 4kiB page is not available as it is used for a header.
25These files are compiled from ‘.dts’ (device tree source) files present in the BDK source

under ‘/boards’
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There is code to load a ‘.dtb’ file, validate it, and make it available to the
bdk_config_xxx functions. To retrieve values, options are addressed by their

string name and additional optional parameters (e.g. to select one of the four
memory controllers). Lots of string formatting and comparison is needed to
retrieve a simple integer value. Not to mention, there is a giant table specifying
each options name, type, parameters, default value and, optionally, value range.

As the new firmware does not use these devicetree files, it was a natural step to
try and remove as much of this code as possible. The only part of it necessary for
the DRAM initialization are the options loaded by libdram_config_load.c .
In that file, all DRAM relevant options are retrieved from the configuration
system, and are put into a struct dram_config_t . Apart from this, the DRAM
code is not dependent on the configuration system.

Code size had to be reduced. To achieve this, it was decided to include a
populated dram_config_t struct in the source, instead of loading values into
it dynamically. This allowed the elimination of the whole configuration system.
The populated struct was extracted from the stable firmware stack, by printing
out its values after it was loaded26.

4.3.6 Achieving DRAM Initialization

After the compilation issues and size limitations were overcome, the DRAM
initialization routine extracted from the BDK code included in coreboot was
functional. Only minor points had to be addressed.

The first point was correctly handling memory mapping and locking/unlocking
the scratchpad. Because the BDK DRAM initialization code is used outside
of the BDK, none of the required setup is done. Fortunately, the new ATF
already included the required steps. Before running DRAM configuration, the
scratchpad in the L2 cache needs to be locked, while the rest of memory needs
to be accessible as secure memory. The DRAM configuration code will read
and write from various locations in memory, including address zero. After con-
figuration has concluded, the scratchpad can be unlocked and memory can be
set up properly.

Another issue emerged during testing. The boot process was overwriting seem-
ingly random unrelated variables during execution. It turned out this was a
stack overflow issue. Increasing the stack size from 0x1000 to 0x2000 fixed this
problem27.

26The code for this extraction can be found here: gitlab.inf.ethz.ch/PROJECT-
Enzian/enzian-bdk/-/tree/extract-dram-training-config

27This can be adjusted in plat/enzian/include/platform_def.h
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4.4 Loading into UEFI
After enabling proper DRAM configuration, there was still one bug left that
was preventing the new firmware stack to reliably load into UEFI. During most
executions, the ATF would hang trying to initialize runtime services28. These
services include the Power State Coordination Interface (PSCI), which relies
on a so called power domain tree description to be provided by the platform
code29. More information on PSCI can be found in section 3.12 of Alessandro
Legnani’s thesis [10]. The power domain tree description he wrote was not
tested, so the bug was not detected. The power domain tree is described by an
array of unsigned integers, each representing a power domain. Each entry in
this list specifies how many children the respective node has, so there needs to
be one number for each node. In the description found in the code, the numbers
for some of the child nodes were missing, which led the PSCI code to try to
configure power domains that did not exist, because it was reading values out
of bounds of the description array. With this fixed, the new ATF is able to
consistently load into UEFI.

4.5 GSER/QLM & SATA Initialization
A crucial part in achieving a successful Linux boot is to be able to load a Linux
kernel. This can be done from a disk or from the network. Because there was
already preliminary work done on trying to get SATA (Serial AT Attachment)
disks to work [13], this route was pursued.

The SATA driver in the UEFI implementation already did not work properly
(see Section 2.11.2). This is, on top of the fact that there is no prior work on
SATA initialization on the ATF side. What seemed like just a bugfix away is
actually much more work than anticipated.

To initialize a SATA controller on the ThunderX, one has to first initialize
and configure the GSER (General Serializer/Deserializer Unit)30. It manages
QLMs, each of which is a four data lane interface that can have multiple different
purposes. The ThunderX has 16 such QLMs. Six are reserved for CCPI™,
QLM0 and QLM1 can be configured for miscellaneous protocols, the remaining
ones are for SATA and PCIe. For Enzian, only QLM3 is connected to a SATA
controller.

The process of configuring a GSER for SATA mode is complex. The manual
explains it step by step, though some of the step descriptions require knowledge
from elsewhere, e.g. ‘Configure the reference clock’. There are multiple options
here and no indication as to which to choose. Similar problems appear in other
instructions.

28This is part of what the ATF provides out of the box.
29See section 5.6.2 in the ATF documentation [2]
30Find detailed information in Chapter 25 of the ThunderX manual[5]
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Being familiar with the BDK code after analyzing and incorporating the DRAM
part of it into BL1, I chose to try the same for the SATA initialization code.
In the end it is a sequence of operations that has to be performed to properly
initialize the device, and the BDK code is proven to work, so reinventing the
wheel does not seem reasonable. Fortunately, the different hardware initial-
ization routines under libbdk-hal are somewhat independent and were thus
easier to bring into the ATF and compile them.

Some investigation of the BDK boot flow showed which api functions were called,
so all that had to be done was to grab the relevant files from the BDK, bake
them into BL31 and call the necessary functions in the setup routine of BL31.
Here we do not have to deal with the size constraints, so that is another obstacle
out of the way.

Unfortunately, this alone was not enough. Naively calling the BDK functions
from BL31 just resulted in invalid memory accesses. Calling the routine before
and after the MMU was enabled moved the crash to a different place in the
code. What is missing here is presumably correct memory mapping that allows
access to the relevant CSRs. The correct mapping was not yet figured out, nor
could it be confirmed that this was in fact the issue causing the crash. It might
as well be that the BDK code does something that is not possible in the ATF
environment. Thorough investigation and debugging are needed here to find
the issue. The time constraints of this thesis prevented me from investigating
further myself.
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5 Evaluation
Since the DRAM initialization was implemented and the mentioned issues were
fixed, the ATF implementation has not exhibited any unstable behavior. The
runtime is consistent and similar to the time the BDK takes in the old stack.
This is expected, as the DRAM training takes up the majority of time, and
now both essentially run the same routine for that. DRAM is working, as far
as a preliminary test could confirm (see next paragraph). Full testing will be
possible once proper memory testing software like Memtest86 can be run.

The simple memory test was conducted as follows: In BL2, an MMU entry
was added to map addresses from 0x1000000 (after any code or data sections)
to 0x2000000000 (128GiB boundary) as non-cacheable direct access RAM, and
then different locations within this region are tested by writing a value to them
and reading it again, checking if they are equal (see the code in Figure 5). None
of multiple runs of this test showed any failures. Curiously, running this test in
BL2 makes a later part of the ATF code panic repeatedly, presumably because
it overwrites some important data.

The new ATF implementation can load the new UEFI implementation con-
sistently, which then crashes because of missing initialization steps described
above. Average execution time of the ATF until it loads into UEFI is about 10
seconds.

The code from the BDK that was imported into the ATF consists of 15 000
lines of C source code and 140 000 lines of C header code, both numbers are
without comments. This is a considerable amount, but still much less than the
full BDK. The binary size of the BL1 with the BDK DRAM code now is close
to the 192KiB limit imposed by the boot ROM loading routine, so if further
expansions of this stage are necessary, this needs to be revisited.
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--- Memory map entry added to plat_enzian_mmap for BL2:

MAP_REGION_FLAT(0x1000000, 0x2000000000-0x1000000,
MT_MEMORY | MT_RW | MT_NS | MT_NON_CACHEABLE),

-- Memory test code

void test_mem(uint64_t start, uint64_t end) {
uint64_t stride = 1024 * sizeof(uint64_t);
uint64_t test_data = 0x1234567890abcdef;
uint64_t successes = 0;
uint64_t failures = 0;

INFO("Begin Mem Test\n");
for (uint64_t addr = start;
addr < end - sizeof(uint64_t);
addr += stride

) {
volatile uint64_t *ptr = (uint64_t *)(addr);
*ptr = test_data;
uint64_t result = *ptr;
if (result != test_data) {

++failures;
WARN("Invalid value read during mem test at"

"memory address %lx, "
"expected %lx, got %lx\n",
addr, test_data, result);

} else {
++successes;

}
++test_data;

}
INFO("Mem Test done, Success: %ld, Failure: %ld\n",
successes, failures);

}

--- Output from the Boot log

INFO: Testing 0x1000000..0x2000000000
INFO: Begin Mem Test
INFO: Mem Test done, Success: 16775168, Failure: 0

Figure 5: Memory testing code and log output
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6 Discussion
6.1 The Problem with Firmware
Abstraction is an indispensable tool when building computers. It allows the
usage of highly complex systems through iteratively simpler interfaces. However,
abstraction can also become a burden.

6.1.1 Independent Layers

When different teams develop the different layers of firmware, lack of cooperation
necessitates the introduction of abstractions. The hardware vendor is expected
to deliver a firmware for their chip that correctly initializes all the hardware
and allows loading an operating system. The operating system requires certain
information about the hardware to be able to work. In Linux for Arm, this can
be done by supplying a Devicetree [11] or via ACPI (Advanced Configuration
and Power Interface) tables [12].

Traditionally, Arm was primarily used in embedded systems. These systems
would only ever run one OS, shipped with the device. Later, Arm chips were
used in servers and personal computers, where x86 was the dominant architec-
ture.

For Arm systems, Arm developed the ATF as a standardized firmware imple-
mentation. It supports every step from ROM to loading user software like a
Linux kernel. In practice, instead of loading a Linux kernel directly, software
like U-Boot31 is used to enable loading user supplied software from other sources
such as the network or various filesystems.

In the x86 world, UEFI and ACPI were invented to combat the lack of stan-
dardized firmware on x86 machines. Regardless of how the chip looks and what
the firmware does, it loads a UEFI implementation, which exposes ACPI tables
to the operating system as a well known interface.

Here lies the first problem. UEFI was designed by people primarily interested
in writing the operating system part, while the firmware is developed by peo-
ple designing hardware. This discrepancy leads to separated ecosystems that
know almost nothing of each other. The firmware has to do a lot of hardware
initialization to enable UEFI to work correctly, while the UEFI also has to
do hardware configuration to make sure the operating system finds the system
in a well known state. Both parts have to implement abstractions for virtual
memory, hardware configuration registers, etc. Both parts have their own code
structure, style and principles, as well as security standards.

From the OS’ point of view, the system looks well defined and well behaved. The
hardware does exactly as it is told, no undetectable errors occur. It has to trust
the hardware. Here we find the second problem: Even trusting the hardware

31docs.u-boot.org
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is not sustainable. Cloud computing hyperscalers acknowledged this and are
implementing various measures to make their hardware more trustworthy, see
e.g. Google [9].

It is not just the hardware we have to trust. At every step of the way towards
running user software we are looking at components we cannot trust. The boot
ROM, the firmware, the UEFI, the kernel; all of these are potential points of
failure. The kernel is presumably the most well tested part of this chain. The
lack of trust gives birth to a recurring theme: Building another layer on top of
the tower of untrusted ones.

6.1.2 ThunderX Firmware

Now enter the firmware stack for the ThunderX. It is an Arm processor, so it
should have firmware based on ATF. This however, is not the case. We have
a custom, hardcoded boot ROM, that loads 192KiB of code into the L2 cache
as the first firmware stage. This is part of the BDK, which then loads the rest
of itself, runs initialization code and chainloads an ATF implementation. The
ATF loads yet another stage, the UEFI. Only then we can finally venture into
user software like Linux.

What do we need Linux for? To abstract away the hardware, virtualize and
schedule user programs and provide a runtime environment for easy creation
of such programs. Does this sound familiar? Remember the features of the
BDK described in Section 3. We have a filesystem, network, multithreading
and a notion of ‘Apps’. Apps use the rich environment provided by the BDK
to perform arbitrary tasks, in this case the task is ultimately loading the ATF.
In that moment, the whole runtime, all the abstractions, all the code is thrown
away, making way for the next complex system in line. The ATF leaves behind
the secure monitor to be used by the operating system later, but apart from
that the same thing happens again when it loads the UEFI with its own set of
abstractions.

Especially the BDK seems like it was not designed to be just a firmware stage.
It could be an artifact from the days that Cavium was making smart NICs
(Network Interface Controllers), a complete programming environment, allowing
arbitrary applications to run on top of it, without ever loading a more complex
operating system. It is a complete, full stack solution for system software, not
just firmware. It alone could just load a Linux kernel, without any of the later
stages.

The existence of the other two stages is the result of abstraction expectations.
The ATF is needed to provide the secure monitor, and the UEFI to publish
ACPI tables and UEFI runtime services. These are not required to exist per se,
they could as well be replaced by some other mechanism. It is simply standards
stacked on top of each other that were not meant to be stacked.
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6.2 Implementing a new Firmware Stack
In Section 4, the process of implementing just a small subset of features needed
for a feature complete Enzian firmware is described. Learning about the three
components of the old stack, about the BDK source code intricacies, and the
ATF structure took the majority of time available for the creation of this thesis.

The two theses that did work on this endeavor before both did not complete their
respective objectives fully due of size constraints, same as this thesis. Reading
these two theses suggests that the work is almost complete, just a few tweaks
and missing features, and then we are ready to switch to the new firmware stack.
This is a fallacy. It turns out that, what seems at first like a minor bug or small
missing feature can turn into a huge undertaking.

In Axel Montini’s thesis [13], he states that he was unable to get a SATA driver
to work. This is while using the old BDK/ATF stack to load his UEFI. SATA
device enumeration was achieved shortly after the end of that thesis. However,
there was no realization of how difficult it would be to bring SATA initialization
to the ATF, which would be required for the SATA implementation in UEFI. The
ThunderX manual gives a list of twenty steps that have to be taken in order to
initialize a QLM to SATA mode (refer to ThunderX manual Section 25.1.1.2 [5]).
These in turn require another ten steps (Section 27.4 in the manual), the first
one reading ‘Ensure that the SerDes reference clock is up and stable’. No further
explanation. What is the reference clock? How do I configure it? What does
‘stable’ mean?

The deeper one goes into trying to understand the processes that the old
firmware goes through, the more confusing it gets. Implementing this anew
is a huge undertaking. Every component of the ThunderX is complex and will
require a great deal of labour to get working.

It gets even more difficult to re-implement firmware features, when they have
to work around undocumented quirks in the hardware. One example of this is
the QLM initialization, where the function __bdk_qlm_tune is described with
‘Some QLM speeds need to override the default tuning parameters’. In this
function, one can find magic numbers for certain parameters that seemingly
stem from internal email communications at Cavium32.

The effort required to create a new firmware that is on-par with the old one
feature wise will be a long process. It can be expected that every part of the
process will bring similar difficulties as those encountered while implementing
the features described in this thesis. The large features missing at the time of
writing are SATA and PCIe, USB and Network. Additionally, backporting of
features that were added to the old firmware stack by the systems group, and
potential changes to how the OS is loaded (e.g. describing Enzian hardware via
ACPI instead of a Devicetree) have to be considered before a new firmware stack
could be used in production.

32bdk/libbdk-hal/qlm/bdk-qlm-common.c, Line 1371
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Dividing this work into potential future Bachelor’s theses is of questionable feasi-
bility. The two theses that preceded this one [10][13] set up an environment and
implemented the features that were already largely supported by the provided
code in the respective frameworks (except for the DRAM code in the new ATF).
This thesis tested how existing code could be reused instead of reinventing the
wheel.

Given enough time, a working firmware stack could be created. If every future
Bachelor student has to spend months on first understanding all the intricacies
of the process, the hardware, and the existing code before being able to do
anything useful, I project that it will require about three to five more Bachelor
theses before a new firmware stack is ready for use. Additionally, future Bachelor
students might find it hard to write about their learnings, because most of the
details are already described in this and the two preceding theses. Yes, by
reading the theses a lot of the learning process is of course greatly accelerated,
but even with a lot of material at hand it is difficult to delve into this kind of
firmware development, given no prior experience.
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7 Future Work
The overarching goal of this project is to create a new, open firmware stack for
Enzian. The following aspects are not implemented or do not work as of now:

• Full PSCI implementation and soft reset

• QLM/GSER initialization

• SATA initialization and drivers

• PCIe initialization and drivers

• USB initialization and drivers

• NIC initialization and drivers

• Extensive configurability using the BMC and EFRI

All of these items will require a significant time investment to be implemented
from scratch. A way to speed up development, while also ensuring feature-
parity with the old firmware, is to continue with the approach this thesis took:
Understanding and adapting the relevant parts of BDK code.

To get to a testable system quickly, it may be a good strategy to focus on imple-
menting SATA or NIC functionality, to be able to load Linux from disk or the
network. This step of course contains another project: Correctly describing the
hardware to the Linux kernel. After Linux loading was achieved, implementing
more functionality can be done with more confidence.

The BDK contains definitions for the ThunderX hardware registers, and code
to initialize all of the systems listed above. Step by step, one of them can be
isolated, understood, and incorporated into the ATF codebase as part of BL31,
similarly how it was attempted with the SATA code in Section 4.5.

This way, after working out incompatibilities and bugs, the ATF will be able
to initialize the hardware like the BDK does. The next step is then to analyze
the old ATF and port required functionality over to the new implementation.
The same has to be done with the UEFI. Contrary to what the proposal for
this thesis said, I would advise putting as much functionality as possible into
the ATF, and keep the UEFI layer minimal. The ATF provides enough high
level features to implement any desired feature comfortably, and is much more
approachable than EDK II.

One should avoid trying to implement hardware initialization from scratch,
solely based on the manual [5]. Either the existing BDK code is ported over to
ATF, or a new implementation closely follows it. That way, many unforseeable
surprises and bugs will be avoided. Section 6.2 describes why this is important.
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A lot of work has to be done to ensure reliability of the firmware. Currently,
virtually all features present in the firmware are barely tested, apart from the ‘it
does not crash’ metric. It might prove useful to implement a rigorous automated
testing system for each component.

There is one more idea on how to simplify the firmware. Technically, a full UEFI
implementation is not a requirement to run Linux on Arm. Instead of relying
on the complicated EDK II, a simpler component like U-Boot33 could be used.
U-Boot contains code that suggests support for the ThunderX, although this is
not listed in the official documentation. An email exchange with the maintainer
listed in the code confirmed that the support implemented is for U-Boot as an
ATF BL33 payload.

Some initial, naive experiments did not show any success. It was tried to flash
different build artifacts U-Boot produced when compiled with the
thunderx_88xx_defconfig configuration as the BL33, using the scripts that

are in use for the UEFI. This probably failed to load properly or jumps to the
wrong location, making the boot process fail.

If with some more experimentation U-Boot loads and successfully starts Linux
(with the old BDK/ATF stack), this means we can potentially eliminate the
need to write any custom code outside of the ATF entirely. All initialization
logic can live inside the new ATF, and U-Boot is leveraged to handle correctly
loading the Linux kernel.

33docs.u-boot.org/
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8 Conclusion
The most evident conclusion to be drawn from this thesis is that developing
firmware as a non-insider is much more difficult than it seems to be at first
glance. It is very difficult to judge how long the road to success really is, even
with the source code of the old firmware and all available technical documenta-
tion.

After decades of proprietary patchwork in the field of firmware, openly accessible
information about the process of writing firmware is scarce. The best places
to find examples are projects like coreboot and U-Boot, which both support a
variety of platforms, although the reality is that support for platforms is usually
contributed by the vendor, without much accompanying explanation.

A fully understood firmware rewrite for Enzian would greatly benefit its purpose
as a research platform. However, this goal seems further away than previously
thought. There is a lot left to analyze and implement. The further into hard-
ware intricacies one gets, the more unforeseen hurdles appear. This makes it
impossible to accurately estimate the required effort.

This thesis did achieve reliable DRAM initialization at all supported speeds in
the ATF stage, as well as consistent loading into the next boot stage, namely
UEFI. Effort was made to get SATA to work, but this was not completed.
However, a concrete plan for how to proceed with the project was presented
in Section 7. For the future of this project it should be reconsidered wether
assigning more bachelor theses or semester projects is a viable way forward, as
the time investment needed to get accustomed to the Enzian firmware context
before being able to conduct productive work is considerable. Lastly, while
implementing a completely new firmware stack, the possibility of making more
radical changes that could simplify development, like replacing EDK II with
U-Boot, should be considered.

Enzian is a great platform to research firmware. The struggles outlined in this
thesis prove that there is much to learn from it. The more research is conducted,
the easier it will be in the future to build on top of this knowledge.
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Glossary
ACPI Advanced Configuration and Power Interface; A common interface to

device configuration and power management between an OS and UEFI..
32, 33

Arm A processor and software design company, primarily focused on develop-
ing Arm architecture instruction sets.. 7, 9, 20, 32, 33, 37

ARMv8.1 The 64-bit Arm instruction set used by the ThunderX.. 7

ATF Arm Trusted Firmware; Officially ‘Trusted Firmware-A’.. 5, 6, 9–15, 17,
20, 22–30, 32–38

BDK Bring-up and Diagnostic Kit; First stage firmware for the ThunderX,
developed by Cavium. Used in the old firmware stack and source of the
DRAM training and configuration code.. 5, 6, 10–12, 14, 16–18, 20–30,
33, 34, 36, 37

BMC Baseboard Management Controller; A small computer embedded onto
server Motherboards. It is used to control various aspects of the machine,
such as power management and hardware configuration.. 7

CCPI™ Cavium Coherent Processor Interconnect; The cache coherency pro-
tocol of the ThunderX for dual-node NUMA setups.. 7, 28

CSR Configuration and Status Register. 17, 29

DRAM Dynamic Random Access Memory; The main memory type used in a
typical computer.. 7, 8, 10–14, 16–18, 22–28, 30, 38

ECI Enzian Coherent Interconnect; The cache coherency protocol used to con-
nect the ThunderX and the FPGA on an Enzian board.. 7

EDK II EFI Development Kit 2, the UEFI reference implementation. Enzians
UEFI is based on this.. 11, 15, 22, 36–38

EFRI Enzian Firmware Resource Interface; An interface allowing the firmware
on the ThunderX to communicate with the BMC. One usecase is to
provide configuration to the boot process.. 7, 13, 20

FPGA Field Programmable Gate Array; A device containing programmable
logic gates. Can act like a real microchip, often used for rapid prototyping
and testing of new chip designs.. 7

GSER General Serializer/Deserializer Unit. 28
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NIC Network Interface Controller. 33

NUMA Non-Uniform Memory Access; A computer memory design used in
systems with multiple processors. The time to access a memory location
depends on where it is located (local to the current processor/node, shared,
or local to another node).. 7, 23

PCIe Peripheral Component Interconnect Express; A standard to connect pe-
ripheral devices to CPUs, such as graphics cards or storage devices.. 7,
20, 28

QLM Quad Lane Module; Used for CCPI, PCIe, SATA or others. One QLM
provides 4 data lanes (e.g. PCIe x4).. 18, 28, 34

ROM Read Only Memory. 16

SATA Serial AT Attachment; An interface to connect storage devices.. 28, 36,
38

scratchpad A region in the ThunderX’s L2 cache that is used to run code from
before DRAM is initialized.. 11, 12

SMC Secure Monitor Call; A mechanism that allows calling into predefined
routines running at EL3.. 7, 9

ThunderX Cavium® ThunderX™ (CN88XX), the 48 Core Arm AArch64 Pro-
cessor used in Enzian. 5, 7, 8, 10, 11, 16, 18, 22, 23, 25, 28, 33, 34, 36,
37

TWSI Two-Wire Serial Interface; Also known as I2C (Inter-Integrated Cir-
cuit). 8, 18, 26

UEFI Unified Extensible Firmware Interface. 5, 6, 9–11, 13–15, 22, 28, 30,
32–34, 36–38
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