
DISS. ETH NO. 30823

Trustworthy Platform Management

A thesis submitted to attain the degree of

Doctor of Sciences

(Dr. sc. ETH Zurich)

presented by

Daniel David Schwyn

born on 08.05.1990

accepted on the recommendation of

Prof. Dr. Timothy Roscoe

Prof. Dr. Donald E. Porter

Prof. Dr. Gustavo Alonso

2025

A thesis submitted to ETH Zurich to attain the degree of Doctor of Sciences.

Examiner:

Prof. Dr. Timothy Roscoe

Co-examiners:

Prof. Dr. Donald E. Porter, Prof. Dr. Gustavo Alonso

Examination date:

9 December 2024

Trustworthy Platform Management.

Copyright © 2025, Daniel David Schwyn.

Permission to print for personal and academic use, as well as permission for electronic reproduction
and dissemination in unaltered and complete form are granted. All other rights reserved.

DISS. ETH NO: 30823

DOI: 10.3929/ethz-b-000715675

https://doi.org/10.3929/ethz-b-000715675

Abstract

It goes without saying that modern computer systems are enormously com-
plex. There are however less well-known aspects to this complexity that are
never visible to the operating system or firmware running on the main proces-
sors. Modern server boards include systems called Baseboard Management
Controllers (BMCs) that manage this complexity. They orchestrate power and
clock delivery to turn the machine on and off, manage firmware for other compo-
nents on the board and offer remote management capabilities. However, despite
their critical role in the safety and security of our modern compute infrastruc-
ture, BMCs are understudied in the academic community. This is in part due
to the fact, that until recently these systems were proprietary and closed-source.
Open-source systems have started to appear, but transparency alone does not
solve the fundamental problem with BMCs: the lack of high-assurance engi-
neering techniques is at odds with the criticality of these systems. The analysis
presented in this dissertation shows, that there is a steady stream of newly dis-
covered vulnerabilities affecting BMCs. Driven by the experience of building
a BMC for Enzian, a heterogeneous server platform for systems research, this
dissertation makes contributions to improving the state of the art for BMCs,
both in terms of safety and security.

A BMC needs to manage vital aspects of a computing platform like power
and clock delivery and firmware provisioning. Without correct implementations
of these functions, the hardware cannot be operated safely. In this dissertation
I propose an approach to creating such implementations using formal hardware
models. I demonstrate the approach using power and clock delivery as an ex-
ample. A power and clock manager has to correctly configure the network of
regulators that supply power and clocks to the various components. Miscon-
figuring this network can cause permanent hardware damage. It is therefore
arguably the most critical BMC function. I present a model that describes these
networks declaratively. From this, a tool then generates correct configurations
for the power and clock delivery topology, including a sequence of steps to ap-
ply these configurations. I show that full power sequences for a real two-socket

iii

Abstract

server can be generated in a matter of seconds. The generated sequences are
used productively in Enzian’s power management stack.

The configuration steps then need to be communicated to the regulators
over bus-based chip-to-chip protocols such as Inter-Integrated Circuit (I2C).
These protocols are notorious for their interoperability issues between different
devices attached to the buses. This dissertation addresses these issues with
a framework for generating provably correct I2C communication stacks. The
framework can generate both software and hardware components from model-
checked specifications. The resulting I2C stacks have comparable performance
with handwritten solutions in off-the-shelf systems.

Unfortunately, correct implementations of BMC functions are not enough:
the analysis of BMC vulnerabilities presented in this dissertation shows that
a majority of these vulnerabilities are privilege-escalation bugs. I address the
security aspect of building a BMC by proposing a system design based on seL4,
a provably correct microkernel. The design addresses the need for isolation
between critical and untrusted BMC components. Furthermore, the design
offers an incremental retrofit strategy for existing BMC systems.

In summary, this dissertation not only identifies the problems with existing
BMC systems but also contributes several concrete solutions towards a future
of trustworthy platform management stacks.

iv

Zusammenfassung

Es ist allgemein anerkannt, dass moderne Computersysteme enorm komplex
sind. Es gibt allerdings weniger bekannte Aspekte dieser Komplexität, die weder
für das Betriebssystem noch für die Firmware auf den Hauptprozessoren sichtbar
sind. Auf modernen Serverplatinen wird diese Komplexität von Board Manage-
ment Controllern (BMCs) verwaltet. Sie orchestrieren die Strom- und Taktzufuhr
um die Maschine ein- und auszuschalten, verwalten Firmware für Platinenkom-
ponenten und bieten Fernwartungszugriff. Trotz ihrer zentralen Rolle für die
Sicherheit unserer modernen Recheninfrastruktur sind BMCs kaum Gegenstand
akademischer Forschung. Dies ist teilweise der Tatsache geschuldet, dass diese
Systeme bis vor Kurzem proprietär und nicht quelloffen waren. Unterdessen gibt
es quelloffene Systeme, aber Transparenz alleine löst das fundamentale Problem
mit BMCs nicht: Die Tatsache, dass bei BMCs kaum Methoden für hochkritische
Software zur Anwendung kommen, verträgt sich nicht mit der zentralen Rolle
dieser Systeme. Die Analyse, die ich in dieser Dissertation präsentiere, zeigt,
dass fortlaufend neue Sicherheitslücken in BMCs entdeckt werden. Basierend
auf der Erfahrung mit dem Bau eines BMCs für Enzian, einer heterogenen Ser-
verplattform für die Computersystemforschung, leistet diese Dissertation einen
Beitrag zur Verbesserung der Sicherheit von BMCs.

Ein BMC verwaltet grundlegende Aspekte von Computerplattformen wie
Strom- und Taktversorgung und die Bereitstellung von Firmware. Die Hardware
kann ohne korrekte Implementationen dieser Funktionen nicht sicher betrieben
werden. In dieser Dissertation schlage ich einen Ansatz vor, der solche korrekte
Implementationen durch den Einsatz von formalen Hardwaremodellen ermög-
licht. Ich demonstriere den Ansatz mit Strom- und Taktzufuhr als Beispiel. Die
Strom- und Taktverwaltung muss das Netzwerk der Regler, die die verschiedenen
Komponenten versorgen, richtig konfigurieren. Fehlkonfigurationen können zu
bleibenden Hardwareschäden führen. Diese Funktion ist deshalb wohl die wich-
tigste eines BMCs. Ich präsentiere ein Modell, das diese Netzwerke deklarativ
beschreibt. Ein Generator kann daraus korrekte Konfigurationen für die Strom-

v

Zusammenfassung

und Takttopologie erzeugen, inklusive einer Sequenz von Konfigurationsschrit-
ten. Ich zeige, dass ganze Ein- und Ausschaltsequenzen für einen realen Server
mit zwei Sockeln innert weniger Sekunden generiert werden können. Die er-
zeugten Sequenzen sind Teil der produktiven Stromüberwachungssoftware für
Enzian.

Die Konfigurationsschritte müssen via busbasierte Protokolle wie Inter-Inte-
grated Circuit (I2C) an die Regler übertragen werden. Diese Protokolle sind be-
kannt für ihre Interoperabilitätsprobleme zwischen verschiedenen angeschlosse-
nen Geräten. In dieser Dissertation werden diese Probleme mit einem Framework
behoben, das beweisbar korrekte I2C-Kommunikationsstapel generieren kann.
Das Framework kann aus modellgeprüften Spezifikationen sowohl Software- als
auch Hardwarekomponenten erzeugen. Die Leistungsfähigkeit der generierten
I2C-Kommunikationsstapel ist vergleichbar mit handgeschriebenen Lösungen
in handelsüblichen Systemen.

Leider reichen korrekte Implementationen von BMC-Funktionen nicht aus:
Die Analyse von BMC-Sicherheitslücken, die ich in dieser Dissertation prä-
sentiere, zeigt, dass die Mehrheit dieser Sicherheitslücken Rechteausweitungs-
fehler sind. Ich befasse mich mit dem Sicherheitsaspekt von BMCs, indem ich
ein Systemdesign vorschlage, das auf seL4 basiert, einem beweisbar korrekten
Mikrokernel. Das Design bietet die notwendige Isolation zwischen kritischen
und nicht vertrauenswürdigen BMC-Komponenten. Zusätzlich bietet das Design
eine inkrementelle Nachrüstungsstrategie für bestehende BMC-Systeme.

Zusammengefasst zeigt diese Dissertation nicht nur die Probleme mit be-
stehenden BMC-Systemen auf, sondern präsentiert auch mehrere konkrete Lö-
sungen für eine Zukunft mit vertrauenswürdigen Plattformverwaltungsstapeln.

vi

Acknowledgements

This dissertation would not be what it is without the involvement of many
people. More importantly, my doctorate would not have been the same.

First, I would like to thank my advisor, Mothy Roscoe, for giving me the op-
portunity to do a doctorate in the Systems Group at ETH Zurich and convincing
me to pursue it. Thank you for your support and advice and for sharing your
deep insights into computer systems.

I would also like to thank Gustavo Alonso and Don Porter for agreeing to be on
my committee. Your valuable feedback helped me to improve this dissertation.

A big thank you goes to everyone in the Enzian Team. There are not many
research groups in the world crazy enough to build a computer like Enzian. I
am grateful and proud to have done my doctorate in one that is. Enzian taught
me things about computers I never knew I wanted to know and that I could not
have learned any other way. Special thanks go to David Cock without whom I
doubt Enzian would exist.

Further, I would like to thank Michael Giardino for being ever optimistic and
for encouraging me when I sometimes was not convinced that my research was
worth pursuing. This was especially true during the pandemic when it was way
too easy to lose sight of the goal while sitting alone in front of a screen at home.

Thank you as well to all my other friends and colleagues in the Systems
Group: Abishek, Adam, Ana, Anastasiia, Andrea, Ben, Benjamin, Dario, Fabio,
Foteini, Hidde, Jasmin, Lazar, Lukas, Max, Maxi, Melissa, Michael, Michal,
Monica, Nicolas, Nora, Pengcheng, Reto, Roni, Roman, Sam, Tom, Vasilis,
Yazhuo, Zhenhao and Zikai. It was a privilege working with you all. Your
insights and perspective improved my work and made me a better researcher.
A huge thank you also to the Systems Group’s amazing admin team: Jena,
Macy, Nadia, Natasha, and Simonetta. Thank your for always finding answers
to any administrative questions, and for knowing exactly when that chocolate
was needed the most. The Systems Group is a special place because of its
members. Thank you for six years without a single boring lunch break.

vii

Acknowledgements

I also had the pleasure to work with a number of brilliant students during my
doctorate: Alessandro, Axel, Aya, Cedric, Constantin, Dennis, Edem, Georg,
Jan Nino, Julian, Linus, Manuel, Moritz, Sarah, Thomas, and Tobias. Not only
did your work contribute to the research in this dissertation, but working with
you probably taught me more about research than I taught you. Thank you all.

To all my friends – many of whom knew I was going to do a doctorate before
I did: Thank you for distracting me when things got stressful, and sorry for all
the rants you had to listen to.

To my family: thank you for your support and for always believing in me. To
my parents: thank you for instilling me with the curiosity and fascination for
science that led me to do a doctorate.

And finally to Kim: Thank you for keeping up with me in the stressful times.
Thank you for always knowing that I could do it, especially in the times when I
thought I could not.

Zürich, February 2025

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

1 Introduction 1

1.1 Structure of the dissertation . 3
1.2 Notes on collaborative work 4

2 Case Study: The Enzian BMC 7

2.1 Existing BMC systems . 10
2.2 Adapting OpenBMC . 11

2.2.1 Prototyping the power sequencer 11
2.2.2 Turning Enzian on . 15

2.3 Conclusion . 15

3 Critique of the State of the Art 17

3.1 BMC vulnerability analysis . 18
3.1.1 Methodology . 18
3.1.2 Vulnerabilities over time 18
3.1.3 A taxonomy of vulnerabilities 19
3.1.4 A closer look at non-critical vulnerabilities 22

3.2 Conclusion . 24

4 Declarative Power Sequencing 25

4.1 Background . 27
4.2 Experience . 29
4.3 Model . 31
4.4 Algorithms . 36

4.4.1 Computing the platform state 36

ix

Contents

4.4.2 Computing the sequence 38
4.4.3 Full power-up sequence 38

4.5 Evaluation . 40
4.5.1 Generating working power sequences 40
4.5.2 Efficient state generation 42
4.5.3 Efficient Sequence Generation 45
4.5.4 Re-computing sequences for new revisions 47
4.5.5 Adapting the tool . 47

4.6 Related Work . 48
4.7 Conclusion . 50

5 Dynamic Power Management 53

5.1 Changes to the model . 54
5.2 New algorithms . 56

5.2.1 Computing the platform state 57
5.3 Evaluation . 58
5.4 Conclusion . 60

5.4.1 An alternative to online sequence generation 60

6 A Trustworthy I2C Stack 63

6.1 Background and problem statement 65
6.1.1 The importance of I2C and related protocols 65
6.1.2 What makes I2C different? 66
6.1.3 The I2C protocol stack and ecosystem 68

6.2 Efeu design and implementation 70
6.2.1 Specifying the driver stack 70
6.2.2 Efeu compiler overview 73
6.2.3 C Backend . 74
6.2.4 Verilog backend . 76
6.2.5 Generating hybrid hardware/software drivers 77
6.2.6 Promela backend . 80

6.3 Verification . 81
6.3.1 Approach . 81
6.3.2 Verification Code Size 83
6.3.3 Verification Runtime 83

x

Contents

6.3.4 Scalability . 85
6.3.5 Non-Standard Devices 85

6.4 Evaluation on real hardware 87
6.4.1 Source code size . 88
6.4.2 Achievable Bus Speeds 89
6.4.3 CPU Usage . 91
6.4.4 FPGA resource utilization 94
6.4.5 Discussion . 96

6.5 Related Work . 97
6.5.1 Hardware/software co-design 97
6.5.2 Driver synthesis . 98
6.5.3 Driver verification . 98

6.6 Conclusion . 99

7 System Design 101

7.1 Providing isolation . 102
7.1.1 Physical separation . 102
7.1.2 Software isolation . 105
7.1.3 Summary . 108

7.2 A trustworthy BMC design . 108
7.2.1 BMC cyber retrofit . 110
7.2.2 Creating trusted BMC components 111
7.2.3 Trusted BMC hardware components 112

7.3 Preventing vulnerabilities by design 113
7.3.1 Preventing vulnerabilities in critical components 113
7.3.2 Preventing privilege escalation vulnerabilities 113
7.3.3 Containing non-critical vulnerabilities 114

7.4 Conclusion . 114

8 Future Work 115

8.1 Cyber-retrofitting BMCs . 115
8.1.1 More trustworthy components 116
8.1.2 Component interfaces 116
8.1.3 BMC interfaces . 116

xi

Contents

8.2 Hardware topology and schematics 117
8.2.1 Extracting topology information 117
8.2.2 Generating netlists from specifications 118

8.3 Opening BMCs for research 119
8.4 BMCs and the de-facto OS . 121

9 Conclusion 123

xii

1
Introduction

Modern servers are enormously complex systems. Many parts on them are
outside the control of what is traditionally seen as the OS [65]. This starts with
the software that runs before the OS even boots. It is the norm for a modern CPU
to run two or more stages of firmware before loading the OS kernel: the first
stages initialize the hardware and the later stages provide facilities to load the
OS kernel. The standard for Arm CPUs is to first load Arm Trusted Firmware
(ATF), which consists of two to three stages. ATF then loads UEFI [12]. On
AMD CPUs it is an initializer built with AMD Generic Encapsulated Software
Architecture (AGESA) [2] followed by UEFI [2]. Firmware often also stays
resident to offer services to the OS like turning cores on and off [193, 13]. This
is just (a small part of) the complexity on the application processor. Much less
well known however, is the complexity further below. A modern server is not
just a single CPU. It is a collection of multiple CPU sockets and peripherals
and with the trend to more heterogeneous computing also specialized processors
like GPUs and more recently FPGAs. All these components need power, often
multiple inputs with different voltages [26]. The result is a complex network of
regulators that transform the output from the main power supply to the various
voltages needed by these consumers. The need for energy efficiency also requires
individual power domains to be turned on and off dynamically [15].

The complexity however, goes beyond power distribution: each of these
components runs their own firmware and software that needs to be provisioned
and serviced remotely. Together with monitoring requirements this has led to
modern servers containing an embedded system, a computer in the computer,

1

Chapter 1 – Introduction

that manages all this complexity. These embedded systems are called Baseboard
Management Controllers (BMCs).

This is not just the case for servers, however. Increasingly, embedded sys-
tems and systems-on-chip (SoCs) contain their own service processors. The
i.MX 8X family of SoCs by NXP contains a microcontroller it calls the “System
control unit” and the AMD Zynq MPSoC SoC has a “Platform Management
Unit”. The same is the case for mainstream CPUs. They frequently contain
non-architectural cores. These are auxiliary cores that run platform manage-
ment functionality. The firmware running on these cores is vendor-supplied
and invisible to user code running on the application cores. Intel calls their
management core the “Intel Management Engine” while AMD processors have
a “Platform Security Processor”.

It is not uncommon for these service processors to run a complete OS like
Linux or, in the case of the Intel Management Engine, Minix [194]. Full-
blown server BMCs additionally are usually connected to the network and run a
webserver for remote management.

Narayanan et al. [138] argue that the resulting inherent complexity of the
firmware code routinely introduces bugs and vulnerabilities. The general state
of firmware running on BMCs is at odds with the high level of privilege with
which it executes [21].

Almost no attention has been paid in the research community to rigorously
engineering the software for BMCs. This is despite the fact that a BMC has
almost complete control over the server, is accessible over the network, and runs
completely independently of any OS, hypervisor, or firmware on the main CPU.
This has largely to do with the fact that until a few years ago, BMC firmware
was proprietary and not publicly available at all [67].

Recent projects such as OpenBMC [64] have disclosed some implementations
to the public, with the aim of providing more transparency and in the hopes of
collectively finding and fixing bugs and vulnerabilities [68].

While openness helps with transparency and development, it does not elimi-
nate vulnerabilities, and there have been significant critical flaws discovered in
recent years [48, 47, 50]. Some of these vulnerabilities are related to OpenBMC
itself, which is implemented by a large collection of C++ programs, supple-
mented by some Python and shell scripts, all running over the Linux D-Bus
communications framework [147]. While these underlying technologies are not

2

1.1 Structure of the dissertation

insecure per se, the system as constructed does not provide high assurance of
correctness or security.

I was made aware of this enormous complexity under the hood of modern
computers when joining the effort to build a server system: Enzian, a hetero-
geneous server platform for systems research [39, 186]. The experience with
building the BMC for Enzian yielded the following three main research questions
addressed in this dissertation:

• How do we specify correct behavior of a BMC function, and how do we
obtain a correct implementation?

• BMCs need to interact closely with hardware; how do we ensure the
BMC’s drivers are correct so that the correctness of a BMC function
translates to the hardware?

• Verifying every component in a BMC system is likely to be prohibitively
expensive; how do we keep critical, trusted BMC functions secure in the
presence of less trusted components?

1.1 Structure of the dissertation

I start in Chapter 2 with an account of the challenges we encountered when
building the Enzian BMC. The closed nature of BMCs, especially the low-level
functions like power management, made it necessary to reverse-engineer some
of the knowledge that I suspect is available in industry.

In this process I also became aware of the poor state of BMC security. Every
server relies on its BMC for its correct operation. This is an enormous amount of
implicit trust that our modern compute infrastructure puts into BMCs. However,
as the vulnerability analysis in Chapter 3 shows, BMCs are far from trustworthy.
I found 400 vulnerabilities and classify them to inform a safer and more secure
system design.

The first part to this design is producing correct implementations for criti-
cal BMC functions. The biggest challenge in building the Enzian BMC was
configuring the aforementioned power distribution network to turn the board
on. The lack of principled approaches in the literature, paired with some close

3

Chapter 1 – Introduction

calls during the bringup of the first Enzian board, inspired the work I present
in Chapter 4. We developed a declarative model for power distribution topolo-
gies and demonstrated that we can efficiently synthesize correct configurations
and instructions to transition these networks into the desired power states. In
Chapter 5, I then explore how to use this model not just for offline sequence
generation but for online dynamic power management.

The sequences generated from our model then need to be correctly communi-
cated to the hardware. This communication happens over bus-based chip-to-chip
protocols like Inter-Integrated Circuit (I2C). Many I2C devices suffer from so-
called quirks which can cause interoperability issues between devices on the
same bus. I discuss this problem in Chapter 6. In our approach, we specify
I2C topologies in a domain specific language (DSL). We then model-check the
system to prove the absence of interoperability bugs. From the same specifi-
cation we can also generate a driver stack for the I2C topology. We generate
both drivers and hardware controllers from these specifications. The generated
stacks work on real hardware and can run at the same frequency and with the
same CPU efficiency as stacks based on off-the-shelf I2C hardware controllers.

While the critical BMC functions need to be correct, there will likely be
components on a BMC like a webserver that are too expensive to build with the
same high assurance. In Chapter 7 I present a system design that addresses the
need for isolation between trusted and untrusted components.

Finally, I summarize the remaining challenges and other interesting research
questions encountered along the way in Chapter 8 before I conclude in Chapter 9.

1.2 Notes on collaborative work

The research in this dissertation was done within the Enzian project. Building a
server system is too large a task for a single doctoral student. This dissertation
therefore contains results from collaborations with other team members. Some
parts of this dissertation have also been published in some form or been accepted
for publication.

The experience report in Chapter 2 has in part been published in a peer-
reviewed publication. Section 8.3 reports on an experiment conducted in the
context of the same publication:

4

1.2 Notes on collaborative work

[39] David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino, Adam
Turowski, Zhenhao He, Nora Hossle, Dario Korolĳa, Melissa Liccia-
rdello, Kristina Martsenko, Reto Achermann, Gustavo Alonso, and Tim-
othy Roscoe. “Enzian: An Open, General, CPU/FPGA Platform for
Systems Software Research”. In: Proceedings of the 27th ACM Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems. ASPLOS 2022. Mar. 2022.

The power topology model presented in Chapter 4 was developed in collab-
oration with Jasmin Schult in the context of her Bachelor’s thesis. It was also
published in a peer-reviewed publication:

[161] Jasmin Schult. “A model-based approach to platform-level power and
clock management”. Bachelor’s Thesis. ETH Zurich, Aug. 2020.

[163] Jasmin Schult, Daniel Schwyn, Michael Giardino, David Cock, Reto
Achermann, and Timothy Roscoe. “Declarative Power Sequencing”. In:
ACM Transactions on Embedded Computing Systems 20.5s (Sept. 2021).

The extensions to the model and algorithms presented in Chapter 5 were
developed in collaboration with Roman Meier in the context of his Master’s
thesis:

[131] Roman Meier. “Declarative Dynamic Power Management”. Master’s
Thesis. ETH Zurich, Oct. 2022.

The I2C framework in Chapter 6 is a continuation of earlier work. The main
part of it was developed in collaboration with Zikai Liu in the context of his
Master’s thesis. It was then extended, and the resulting work was accepted for
publication at a peer-reviewed venue:

[121] Zikai Liu. “Generating Trustworthy I2C Stacks Across Software and
Hardware”. Master’s Thesis. ETH Zurich, Sept. 2023.

[165] Daniel Schwyn, Zikai Liu, and Timothy Roscoe. “Efeu: generating
efficient, verified, hybrid hardware/software drivers for I2C devices”. In:
Proceedings of the Twentieth European Conference on Computer Systems.
EuroSys ’25. Mar. 2025.

5

Chapter 1 – Introduction

The prototype for the Enzian BMC running on seL4 mentioned in Chapter 5
was built by Cedric Heimhofer and Zikai Liu in the context of their respective
semester projects:

[78] Cedric Heimhofer. “Towards high-assurance Board Management Con-
troller software”. Master’s Thesis. ETH Zurich, Mar. 2021.

[122] Zikai Liu. “Towards Trustworthy BMC Software with Virtualization on
seL4”. Semester Project. ETH Zurich, Feb. 2023.

Finally, some of the exploratory work described in Chapter 7 and Chapter 8
is a collaboration with other students in the context of their theses and semester
projects:

[190] Sarah Tröndle. “Real-time Board Management using an FPGA”. Bache-
lor’s Thesis. ETH Zurich, Apr. 2021.

[205] Pengcheng Xu. “Enzian Firmware Resource Interface”. Semester Project.
ETH Zurich, Feb. 2023.

[200] Georg Wehrli. “Generating Platform Configuration from Netlists”. Bach-
elor’s Thesis. ETH Zurich, May 2024.

6

2
Case Study: The Enzian BMC

I learned about the state of the art for BMCs and the challenges in building
one the hard way when I joined the effort to build a computer: Enzian, a
heterogeneous server platform for systems research [39, 186]. I realized that
while every modern server has a BMC, they are a class of systems that is
understudied in the academic world. In this chapter I report on the experience
of building a BMC for a fully fledged server.

Enzian’s defining feature is the cache-coherent link between a 48-core Marvell
Cavium ThunderX-1 CPU and a Xilinx Ultrascale+ XCVU9P FPGA with four
DRAM channels on both sides. In that regard Enzian is unique. From a plat-
form management perspective however, it looks very similar to a commercially
available, off-the-shelf server: a two socket system, with DDR 4 DRAM on both
sides. It has dedicated fans for each socket and four chassis fans. The board is
powered by an ATX compliant power supply with a 12 V supply for each socket
and several auxiliary inputs with lower voltages. Just like an off-the-shelf server
it features a BMC.

Enzian’s BMC is a daughter board connected to the mainboard. This design
allowed us to start developing the BMC stack on an evaluation board while the
printed circuit boards (PCBs) for Enzian were still in the design and manufac-
turing phase. The daughter board in the original design is an Enclustra ZX5
system-on-module (SoM) [133] which features a Zynq-7000 SoC [4]. This is
an SoC with an Armv7 Cortex-A9 dual-core processor and a cache coherent
FPGA (the Zynq systems were one of the inspirations for building Enzian). We
chose a platform with an FPGA to offload certain I/O functions like SPI and

7

Chapter 2 – Case Study: The Enzian BMC

Figure 2.1: Picture of the Enzian board. The BMC module is the green PCB
with a blue heatsink under the blue flyover cables leading to the
QSFP+ cages on the left.

8

I2C controllers to hardware and to be able to correct for potential design errors
in the PCB by rerouting signals in the FPGA fabric. The Armv7-based BMC
platform turned out to be a limitation for some of the research presented in this
dissertation (more on this in Chapter 7). To address this, we now also have pro-
totype machines with Enclustra XU5 modules [132] which are built around the
Zynq Ultrascale+ MPSoC SoC [3] featuring an Armv8 Cortex-A53 quad-core
processor and a larger FPGA. Figure 2.1 shows a picture of the Enzian board
with the original BMC daughter board.

This might seem overengineered for a BMC; indeed we selected the platform
in accordance to one of the design principles of Enzian: “If in doubt, overengi-
neer” [39]. However, it is not too far from what is used in off-the-shelf servers:
almost all BMC platforms by the two most common manufacturers ASPEED
and Nuvoton [68] feature Armv7 or even Armv8 cores [89, 45]. There are
also BMC platforms with integrated FPGAs [175] with a very similar rationale
to why we chose to include an FPGA in our BMC. While a possibly slightly
more powerful than standard BMC allows for more experimentation, it does not
change how the platform is managed.

Enzian is built from off-the-shelf components, but the mainboard is custom
designed. We specified the requirements and contracted a PCB manufacturer to
design and manufacture it. They took care of the low-level design like power
delivery circuits, and the physical layout of the board. To turn an Enzian board
on – or in fact any such system – the power delivery circuits and the regulators
that drive them need to be correctly configured.

It came as a surprise to us that while the manufacturer produced the computer-
aided design (CAD) model and schematics of the board, it was our job to produce
the software that configures all these regulators on the board correctly. This
software turns the board on. Without it, the manufacturer could not run the
integration tests on the board to verify the correct functioning of the design or
rule out manufacturing defects. This is likely somewhat different for off-the-
shelf servers, where both the design and the firmware are handled by the server
manufacturer. Anecdotally however, there are at least different teams involved.
The next section contains more details on how board management firmware is
built.

At the time, we assumed that there were off-the-shelf BMC stacks that take
care of powering the board and other configuration tasks. We investigated what

9

Chapter 2 – Case Study: The Enzian BMC

the options were for Enzian and I present the findings in the next section.

2.1 Existing BMC systems

Traditionally, BMCs are proprietary, closed-source systems [68]. Server manu-
facturers either have their own implementation or use a generic solution that they
adapt to their servers. Examples for the former are Dell Remote Access Con-
troller (DRAC)[54] HPE’s Integrated Lights-Out (iLO) [83], Lenovo’s xClarity
Controller (XCC) [110] and Supermicro’s Intelligent Management [180]. The
most prominent solution in the latter category is MegaRAC SP-X offered by
AMI [11]. It is used in a wide range of servers from most major manufacturers
(including some that also have their own proprietary implementation) [18].

However, the traditional model of manufacturers building servers and selling
them to customers started changing in the last decade: the demand for so called
original design manufacturer (ODM) servers has grown [8]. These are servers
that are designed and built directly to customer specification. This trend is
largely driven by the hyperscalers1 and in 2023 over a third of all servers sold
were ODM-direct designs [187]. In a traditional server where the BMC is
built by the manufacturer, implementing any bug fixes or additional features at
least involves the hardware manufacturer and possibly the vendor of the generic
BMC stack. With ODM servers it became possible for the hyperscalers to take
control over the BMC stack to be able to “troubleshoot [their] own system” and
increase “feature velocity” [64]. The first open source system was OpenBMC.
It was initially developed by Meta (then Facebook) and IBM but is now a Linux
Foundation project and backed by Microsoft, Intel, IBM, Google and Meta [120].

Since the inception of OpenBMC, many vendors of BMC software have
started to offer OpenBMC-based solutions [10, 202, 84]. This is in part due
to a growing customer demand for open-source BMC solutions in the light of
growing security concerns about proprietary firmware [208]. I will come back
to the security of BMCs in Chapter 3.

There is another open-source BMC project called u-bmc [191]. Its aim is to
address some of these security concerns. It is also a Linux distribution but its

1The term “hyperscalers” describes cloud providers that operate infrastructure at very large hori-
zontal scale. This includes companies like Alibaba, Amazon, Google, IBM, Meta and Microsoft.

10

2.2 Adapting OpenBMC

userspace is fully written in Go. It also replaces the notoriously insecure Intel-
ligent Platform Management Interface (IPMI) [21] with Google’s gRPC [16].
The project is however in a much less mature state than OpenBMC [60].

With most BMC solutions being proprietary and closed-source, and u-bmc
not being more than a proof of concept at the time, we were left with OpenBMC
as the only viable option.

2.2 Adapting OpenBMC

OpenBMC is an embedded Linux distribution built with the Yocto project [66].
It supports platform management (power, clock and temperature control) and
firmware provisioning. It also has remote management capabilities through
industry standards like IPMI [90] and Redfish [58] including a web interface.
OpenBMC is organized as a collection of services, each in their own process.
Initially, a large part of the services were implemented in Python, but this
has shifted to C++. The services communicate over D-Bus [147] and are
orchestrated using systemd [184]. Examples for services include voltage and fan
controllers, sensor monitors and a webserver for remote management. All these
services need topology information of the hardware to function: information
about voltage regulators, processing units, fans, etc., and how they are connected.
This information has to be obtained from the platform schematics. While
we have the schematics for Enzian and have also open-sourced them [62],
schematics for other platforms that are supported by OpencBMC are not public.
The documentation on how to port OpenBMC to a new platform is sparse.
Neither did we have a way to compare existing platform implementations to
their schematics. We were essentially on our own.

2.2.1 Prototyping the power sequencer

As mentioned before, the first thing we had to deliver to the board manufacturer
was the sofware that turns the Enzian board on. Without it, the board man-
ufacturer could not verify that the first PCBs function correctly. Figuring out
how to turn on an Enzian turned out to be the biggest challenge from a board
management perspective in getting the platform operational. It not only entails

11

Chapter 2 – Case Study: The Enzian BMC

Figure 2.2: The testbed used to prototype the power sequencing software. The
copper block with an attached fan is in the top left corner. Next to
it is an evaluation board for one of the regulators. On the bottom
left is a custom-designed power distribution board with safety fuses.
The BMC evaluation board is not connected on this picture.

configuring all the rails to the correct voltages, the rails also need to come up
in the right order. Additionally, the regulators’ response to critical events like
overcurrents or high temperatures need to be configured. This is generally re-
ferred to as power sequencing, and we will cover it in detail in Chapter 4. To
the best of our knowledge these sequences are usually derived by experienced
experts and there are no examples to learn from as for commercial platforms the
crucial information is proprietary.

To build expertise in the matter, we built a testbed that consisted of evaluation
boards for Enzian’s BMC SoM and the regulators used on the board. To simulate
the loads of the CPU and FPGA, we used a copper block with a heat sink and
fan attached. The testbed is depicted in Figure 2.2.

12

2.2 Adapting OpenBMC

Figure 2.3: Debugging power sequencing code using our testbed and an oscillo-
scope

13

Chapter 2 – Case Study: The Enzian BMC

This testbed allowed us to prototype the power sequencing code before we had
any finished Enzian boards. We could both test communication to the regulators
over I2C and develop and understanding of how to configure each individual
regulator. The debugging of either often involved an oscilloscope to check the
signal integrity on communication buses, and measure ramp times and fault
response reaction times of regulators. Figure 2.3 shows a picture of such a
debugging session where we were checking that the waveforms on the I2C bus
were correct.

The main goal for this prototype was maximum flexibility in our experiments.
Instead of implementing the full regulator drivers inside the Linux kernel, we
therefore chose to only use the Linux kernel’s bus drivers for I2C. All regulator
specific drivers are implemented in userspace in Python. This turned out to be a
good decision as we could focus on how to interact with the regulators without
having to deal with the idiosyncrasies of Linux kernel drivers. However, the
subtly different ways some regulators implement the I2C standard still posed a
challenge. This experience made us realize both the importance and fragility of
these low-level protocols, and led to the work I present in Chapter 6.

We ultimately retired the testbed in favor of two Enzian boards from the
first iterations that have design defects and are not be able to power the CPU
and FPGA. As they are still populated with all the regulators they serve as
a much more faithful testing platform for BMC development, especially the
power sequencing stack. Using these boards we, e.g., found an issue where the
communication between the BMC and some power regulators would spuriously
stop working. It again took an oscilloscope to find out that this was due to a signal
integrity issue on the I2C bus caused by missing pull-up resistors. While our
testbed had included them, the actual Enzian boards did not, but instead expected
the internal pull-ups in the BMC FPGA to be enabled. A design choice by our
manufacturer that had escaped us and led to quite a bit of frustration when
previously working power sequencing code would suddenly fail.

The initial goal was to retire the Python code in favor of a power sequencer
implemented using OpenBMC’s facilities. However, we have since abandoned
the idea in favor of a higher-assurance power management stack.

14

2.3 Conclusion

2.2.2 Turning Enzian on

The board manufacturer used our power sequencing stack to electrically test
the boards. It was however our task to perform the functional tests as bringing
up the CPU and FPGA was beyond the expertise of the board manufacturer.
Despite having gained quite a bit of confidence in our power sequencing code,
the bringup of the first board that had passed the manufacturer’s tests was a
nail-biting moment. We used current-limiting power supplies to minimize the
chance of frying the board in the event of a power sequencing failure. However,
the ThunderX-1 CPU on Enzian draws about 200 A on its main 0.9 V power rail
during the boot process. Supplied into a short circuit that amount of current
would easily destroy the board. This initial bringup happened mid 2020 during
the COVID-19 pandemic. Due to supply chain issues and lockdowns it would
take another year for the other Enzian boards to arrive, so we could not afford
to lose this first one. We increased the current limit step by step, every time
verifying that all voltages and temperatures were within specification. Figure 2.4
shows our setup for the CPU bringup. While we ultimately managed to boot the
CPU, this experience convinced us there needed to be a less ad-hoc approach to
power sequencing. I describe our solution in Chapter 4.

2.3 Conclusion

Building our own computer has changed our perspective on how modern com-
puting systems work, especially in terms of board management. While probably
none of the lessons we learned are surprising to professional server designers,
they were eye-opening to us as systems researches. Judging from the lack of
scientific literature on many of these topics I suspect this would be the case for
many other researchers as well. The work presented in this dissertation is a
result of these lessons. I start with a critique of the state of the art for board
management in the next chapter. The experience with power sequencing has
resulted in a more principled approach that is described in Chapter 4 and the
experience with I2C has spawned the work described in Chapter 6.

15

Chapter 2 – Case Study: The Enzian BMC

Figure 2.4: Picture of the setup for the first bringup of an Enzian board.

16

3
Critique of the State of the Art

The experience with building a BMC for Enzian did not only make me aware
of how critical these systems are, but also raised concerns about the way they
are designed. I am not the first to realize this. As I pointed out in Section 2.1,
vendors have started to offer open source solutions due to customers raising
concerns about the state of BMC firmware. Indeed, early BMC systems were
not designed with security in mind [68] and a number of vulnerabilities have
gotten public attention [174, 18, 61, 188, 152, 173, 199]. There is further
evidence that the security requirements for BMCs were not taken seriously
enough: in one of the vulnerability database entries a vendor is quoted stating
that their BMCs “are intended to be on a separate management network; they are
not designed nor intended to be placed on or connected to the Internet” [46]. In
the disclosure of another vulnerability it was reported however, that at the time,
over 92 000 systems had their BMCs exposed to the internet (over 47 000 of
them vulnerable to the disclosed vulnerability) [61]. The disclosure also points
out that while it is certainly not a good idea to expose BMCs to the internet,
these vulnerabilities also increase the impact of an attacker gaining access to
a corporate network. The United States National Institute of Standards and
Technology (NIST) released guidelines for firmware resiliency [151]. In light
of recent attacks by state-level actors, it has been pointed out that these firmware
vulnerabilities are a threat to national security and that the NIST guidelines have
critical gaps [178].

To gain more insights into the nature of BMC vulnerabilities, I conducted an
analysis. I will present the results in the following.

17

Chapter 3 – Critique of the State of the Art

3.1 BMC vulnerability analysis

3.1.1 Methodology

To collect BMC-related vulnerabilities I used the CVE Program’s datebase.
The CVE Program has been cataloging vulnerabilities in computer systems
since 1999 [149]. The database is publicly available on GitHub1. I downloaded
a snapshot version on June 26, 20242, and did a keyword search with some
general BMC related terms (BMC, Baseboard) and the names of the most widely
deployed systems (OpenBMC, iLO, (i)DRAC{0-9}, MegaRAC, XCC). Many
of these systems are Linux-based. I intentionally did not explicitly include bugs
in the Linux kernel in my analysis as they are fairly well studied already [29,
171]. I did however include Linux vulnerabilities if they matched the keywords.
The search yielded 476 hits and after manually reviewing them and removing
false positives I was left with 400 vulnerabilities affecting all mainstream BMC
systems. I then analyzed the distribution of these over time (Section 3.1.2) and
developed a taxonomy for the nature of the vulnerabilities (Section 3.1.3).

3.1.2 Vulnerabilities over time

The first analysis provides insights into how BMC security developed over time.
I use the number of vulnerabilities discovered per year as a proxy measure for
security. To be precise, I use the number of CVE records reserved per year,
as the discovery dates are not available in the database. Due to embargoes
mandated by responsible disclosure practices, the two dates can differ by several
months. Despite this difference, the analysis is still able to show the overall
trend in BMC security.

Figure 3.1 shows the results of the analysis. The CVE records that match the
keywords are distributed over 20 years, from 2004 to 2024. While there are very
few vulnerabilities in the earlier years, the number starts to rise around 2020.
The number peaks in 2021 with 117 vulnerabilities and is again lower in the
most recent years.

1https://github.com/CVEProject/cvelistV5
2Git hash: ac6fec85ca8551b9680bb125347af88a8a9fe906

18

https://github.com/CVEProject/cvelistV5

3.1 BMC vulnerability analysis

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

2
0
2
1

2
0
2
2

2
0
2
3

2
0
2
4

0

20

40

60

80

100

120

years

#
vu

ln
er

ab
ili

tie
s

Figure 3.1: Number of vulnerabilities in BMCs over time

I attribute the increase in vulnerabilities in the past years to increased attention
to BMCs rather than worsening security. However, the decrease in the past 2
years is probably due to variance in when the vulnerabilities are published.
There are a few sets of vulnerabilities that, telling from how similar the reports
look, were published together. Some of them state that they were discovered in
internal security reviews. This leads to bursts in the number of vulnerabilities.
The low number in 2024 is due to the database snapshot only covering half the
year.

I conclude that while the security of BMCs is probably not getting worse, it
is also not getting better. I argue that this is due to how BMCs are designed:
instead of ruling out bugs and vulnerabilities by design they follow a reactive
approach where bugs are fixed when they are discovered. In this dissertation I
propose an alternative to this “patch and pray” approach.

3.1.3 A taxonomy of vulnerabilities

To inform a more secure design for BMCs I also analyzed the nature of the
vulnerabilities. The goal is to design a system that rules out classes of vulner-

19

Chapter 3 – Critique of the State of the Art

abilities. The taxonomy therefore focuses on how an attacker can compromise
a critical function of the BMC using the vulnerability, rather than the vector
that enables the vulnerability (e.g., a buffer overflow or flawed cryptography). I
manually categorized the vulnerabilities into the following classes:

Vulnerabilities in critical components. These are flaws in critical BMC com-
ponents that directly compromise the BMC’s ability to safely manage the plat-
form. Examples include bugs in the firmware manager that allow flashing
compromised updates or a driver bug that misconfigures a power regulator.
The category also includes weaknesses in the authorization mechanism like not
forcing system administrators to change default credentials.

Privilege escalation vulnerabilities. These are vulnerabilities in components
that themselves are not critical to the core task of the BMC but can be used
to then gain enough privilege to affect platform management. This can either
be through a further bug in the BMC’s OS that lets an attacker compromise a
critical component or through using ambient authority of the flawed component
to bypass authorization. Examples include path traversal or code injection bugs
in a webserver.

Non-critical vulnerabilities. Like privilege escalations, these are vulnera-
bilities in non-critical components, but the vulnerability stays contained in the
component. The CVE records are not always clear on whether a compromise can
spread. I therefore remained conservative and only classified a vulnerability in a
non-critical component as a privilege escalation if the record explicitly mentions
that sensitive data can be obtained or be tampered with. An example of this kind
of vulnerability is a bug in the HTTP header parser of a webserver that crashes
the server but does not allow an attacker to further affect the system. Calling
such vulnerabilities non-critical might be counter-intuitive. The classification
only refers to the fact that these vulnerabilities cannot affect components that
are safety-critical for the platform. I will revisit this category and the potential
consequences of such vulnerabilities in Section 3.1.4.

20

3.1 BMC vulnerability analysis

critical

17 %

escalation

46 %

non-critical
36 %

unknown

1 %

Figure 3.2: Percentage of BMC vulnerabilities per category.

The percentages of vulnerabilities in each class are shown in Figure 3.2. 46%
of the vulnerabilities are privilege escalations (“escalation”) a further 36% are
non-critical vulnerabilities, bringing the total of vulnerabilities in non-critical
components to over 80%. The rest are vulnerabilities in critical components
(“critical”) except for 1% of vulnerabilities where the CVE records did not
provide enough information for a classification. Most of the vulnerabilities in
critical components are related to authentication and authorization, e.g., insecure
cyphers, default credentials or session management flaws. 4 of the total 69 are
flaws in firmware update validation and a further 3 are low-level bugs related to
restricting hardware access.

The fact that the overwhelming majority of vulnerabilities are in non-critical
components is not surprising: critical components are usually not directly ac-
cessible from outside the BMC and the majority of vulnerabilities are discovered
in remotely accessible components like webservers or IPMI protocol handlers.
This also explains why a high fraction of vulnerabilities in critical components is
related to authentication and authorization as it is the only critical function that
– by its nature – deals with outside access to the BMC. However, almost half the
vulnerabilities allow an escalation of privileges. I attribute this to the fact that
the components that offer remote management have a lot of ambient authority:

21

Chapter 3 – Critique of the State of the Art

they can trigger any management action that they offer, e.g., turning the server
on or off or update firmware. They are, however, only supposed to do so after
checking with the authorization component if the requesting user is allowed to
perform the respective action. If a vulnerability somehow allows bypassing the
authorization check, an attacker can potentially abuse all this ambient authority.
OpenBMC for example by default runs its webserver with root user privileges.
As it uses D-Bus for inter-process communication and connects all services to
the same bus daemon, it can also not enforce strict communication patterns
between components. Instead, every component can call any method offered by
any other component. In the light of these issues it is worth further analyzing
the vulnerabilities that were classified as non-critical.

3.1.4 A closer look at non-critical vulnerabilities

As mentioned, I was conservative in the classification and only classified a
vulnerability in a non-critical component as a privilege escalation if the CVE
explicitly stated so. However, knowing how little privilege restrictions some
BMC systems have, it is worth taking a closer look.

I further divided the class of non-critical vulnerabilities according to the
effect an attacker can achieve with an exploit. With the information in the CVE
records I was able to distinguish three classes of exploits: code execution, client-
side exploits and denial of service (DoS). Code execution vulnerabilities let the
attacker inject code into the compromised component that can then be executed
with the privileges of the component. Client-side vulnerabilities include cross-
site scripting (XSS) and content injection into user interfaces and can be used
to trick a user into executing commands on behalf of an attacker. Finally, DoS
vulnerabilities allow the attacker to render the compromised component useless
by, e.g., crashing it. I only classified a vulnerability as a DoS vulnerability if it
did not also fit one of the other two categories.

The distribution of the sub-categories of non-critical vulnerabilities is shown
in Figure 3.3. Note that 100% here only correspond to the 142 non-critical
vulnerabilities, not the total of 400 BMC vulnerabilities. For 19% of the non-
critical vulnerabilities the CVE records did not contain enough information to
reliably classify them. 12% of the vulnerabilities allow an attacker to gain

22

3.1 BMC vulnerability analysis

code execution

12 %

DoS

46 %client-side
23 %

unknown

19 %

Figure 3.3: Breakdown of BMC vulnerability types in the non-critical category.

code execution. 23% are client-side vulnerabilities and 46% allow “only” DoS
attacks.

While client-side vulnerabilities are by no means harmless, their prevention is
out of the scope of this dissertation as I focus on the system design of the BMC
itself not the client-side interfaces to it. I therefore concentrate on the other two
classes of non-critical vulnerabilities here. According to our classification, the
CVE records for the code execution vulnerabilities do not mention any escalation
of privilege. In a system where, e.g., a webserver runs with high privilege, it is,
however, very likely that the injected code could affect components other than the
vulnerable one. An attacker could, e.g., inject shell code that instructs the power
manager to turn off the machine via a D-Bus call. Similar caution has to be taken
if a vulnerability can “only” be used for a DoS attack on the component. Firstly,
crashing, e.g., the webserver still means that the system can not be accessed
anymore. Unless there are recovery mechanisms, the BMC might need to be
physically reset. In a large deployment this can be very expensive. Secondly,
the attacker might be able to bring the component to monopolize a resource.
One example is sending the component into a busy loop to consume all the CPU
time. Such an attack will still affect the rest of the system. Critical functions
like thermal management might degrade, threatening the safety of the managed
platform.

23

Chapter 3 – Critique of the State of the Art

3.2 Conclusion

I draw two main conclusions from the analysis. First, vulnerabilities in BMCs
are unlikely to disappear with the current system designs. Second, missing or
weak isolation and low privilege restrictions for non-critical components are
major contributors to the continuing appearance of these vulnerabilities. I will
present the proposed system design to address these issues in Chapter 7.

A vulnerability analysis is however less suited to assess the correctness and
safety of components that are critical to a BMC’s core task: managing the
platform. This is in part due to the fact that these components are not directly
accessible to an attacker. Obvious flaws in a component that is critical to the
safe operation of the hardware, like the power manager, would surface during a
manufacturer’s tests and therefore never make it out in to the wild. There could
however still be more subtle flaws, which could be exploited (or triggered by
accident) to damage hardware. There are security vulnerabilities that exploit
power and clock management features [185, 150]. My main critique here is, that
there is very little public literature on how these critical components are built.
At the same time very few platforms with public documentation at the necessary
level exist. These factors make it almost impossible to assess the threat posed by
BMC systems. In the next chapters I will shine a light on some of these issues.

24

4
Declarative Power Sequencing

We have seen that BMCs have to deal with a lot of complexity that is invisible
to the OS or firmware running on the application cores of a server. In Chapter 3
we have seen that despite this critical role BMCs are far from high-assurance
systems. I will focus on the security aspects of BMCs in Chapter 7. Here the
focus is on the complexity and correctness of one of the most important tasks of
a BMC: turning on the machine it manages, a surprisingly subtle problem.

I encountered this problem myself when I was involved in the process of
bringing up BMC software for Enzian, a new, large, server-class board intended
for research. I gave an account of building its BMC in Chapter 2. The biggest
challenge was to figure out how to turn an Enzian board on. This involves a
process called power sequencing: configuring all rails and clocks on the board
to the right voltages and frequencies and turning them on in the right order. The
work in this chapter was driven by this experience as well as 3rd-party accounts
of power sequencing-related problems.

Incorrect behavior of the BMC in controlling voltages on the board can render
the hardware permanently unusable, essentially destroying the board [30]. This,
in turn, means that developing and validating the power sequences for a new
board is a cautious, time-consuming process. Even if there is no damage to hard-
ware, voltage and clock control features can be used to attack the system [185,
150].

The aim is to create a rigorous foundation for engineering power control
software that gives OS and firmware developers assurance that the underlying
hardware can be trusted to behave as advertised. This is an ambitious goal, but

25

Chapter 4 – Declarative Power Sequencing

the first step is to define the BMC’s hardware environment and the constraints
that capture the machine’s safe operation.

We model the power trees of server machines and use these models to syn-
thesize power-on sequences for the server, given a specification of the desired
powered-up state of the system.

The state-of-the-art approach, as illustrated by publicly available systems such
as OpenBMC, is handwritten sequences derived from schematics and datasheets.
In this chapter I describe how we improve on this in the following ways:

• Identifying that platform description is a problem of declarative specifi-

cation, and can (and should) be separate to the mechanism of generating
imperative sequences.

• Recognizing that the important features of power tree nodes (e.g., regu-
lators) are consistent across a wide range of components and topologies,
allowing any system to be specified with a small set of universal primitives,
expressed as a declarative specification language.

• Illustrating that the sequence generation mechanism maps well onto a
well-known and widely-studied problem (constraint satisfaction), with
existing mature tools.

• Demonstrating that this implementation scales efficiently to the large,
complex systems, and works on real production hardware.

The benefits of the approach I describe are allowing the engineer to separate
“what their platform looks like” from “how it is controlled” allowing firstly a
division of labor, and more significantly the opportunity to delegate the mechani-
cal, time-consuming, and error-prone second problem to a mature, well-studied,
and high-performance algorithm. This promises to reduce not only the time
needed to derive a sequence for new hardware, but the maintenance effort as
hardware evolves. In the end, we get both the correct sequence and the reasons
(often buried in datasheets) why the sequence is the way it is.

26

4.1 Background

4.1 Background

I start by surveying the power sequencing problem, and how it has become so
complex.

In the past, it was enough to use careful circuit design to power on a system
which needed only a single 5 V or 3.3 V power rail, supplied directly from
an AT or ATX power supply. As processor frequencies increased, however,
the supply voltage decreased: because the power consumed by a CPU can be
approximated by %�%* ∝ +2 · 5 where + is voltage and 5 is clock frequency,
the increased frequency of processors necessitated a decrease in voltage in order
to keep power budgets reasonable. To obtain these lower voltages, step-down

regulators take an input voltage from a power supply, and step it down to a stable
voltage appropriate for the consuming device.

As boards become more complex, this leads to the situation in modern com-
puting platforms where power and clock management is not a trivial matter,
and the platform consists of numerous power and clock domains. For example,
an AMD Zen processor requires three separate voltage domains (VDDCPU,
VDDIO, and VDDSOC) [26], in some cases drawing hundreds of amps. Each
channel of DDR4 memory requires two different voltages (1.2 V VDD and 2.5 V

VPP) [136]. This means that for a two-socket system, each with two channels
of DDR DRAM, a minimum of 14 different voltage regulators are needed to
supply the necessary voltages, not to mention the needs of storage, networking,
and accelerators. These devices each rely on a tree of regulators, each supplying
voltage within a safe range, often needing to be supplied and activated in a
specific order during the bring-up process. As an example for a modern power
tree, the one for Enzian is shown as Figure 4.1.

As most voltage regulators are able to accept ranges of input voltages and,
depending on configuration, produce a range of output voltages, getting a correct
configuration is critical. Misconfiguration of voltage levels is an obvious source
of failure, but there are additional failure modes associated with power electron-
ics. Latch-up is one such failure mode that can occur due to incorrect power
sequencing, when the input to a CMOS device is greater than VDD, causing a
low impedance path that can cause the circuit to malfunction or be destroyed
completely [135]. As the number of transistors increases and their size decreases
the danger of latch-up and other sequencing failures increases [59]. Borderline

27

C
ha

pt
er

4
–

D
ec

la
ra

tiv
e

Po
w

er
Se

qu
en

ci
ng

ERP2U 750W Baseboard Power (ATX 24 pin)

24A

Text

5V_PSUP
30A

3V3 (x4) 5V (x4)

12V_PSUP
16A

12V4 (x2) 5VSB (x1)

5VSB_PSUP
3A

PSU_PWRGOOD

PWR_OK

PS_ON

PS_ON

3V3_PSUP 5V_PSUP12V_PSUP 5VSB_PSUP

MCP1824T

3V3SB_PSUP

PCIe

BMCQSFP Fans

ERP2U 750W
PMBus 0xb00xbf

EN_VDD_DDRCPU13

EN_VDD_DDRFPGA24

B_FDV_1V8

NCP51400

VTT_DDRCPU13

NCP51400

VTT_DDRCPU24

MAX15053

2V5_CPU_13

MAX15053

2V5_CPU_24

CPU DDR0 CPU DDR1

MAX20751
PMBus 0x72

MAX20751
PMBus 0x70

MAX20751
PMBus 0x73

MAX15301
PMBus 0x1b

MAX15301
PMBus 0x12

MAX15301
PMBus 0x11

MAX15301
PMBus 0x15

MGTAVTT_FPGA

MGTAVCC_FPGA

VCCINT_FPGA

UTIL_3V3
VADJ_1V8

VCC1V8_FPGA
VCCINTIO_BRAM_FPGA

FMC

FPGA

MAX15053 MAX15053MAX15053

SYS_2V5_13 SYS_2V5_24SYS_1V8

PLLs

NCP51400

VTT_DDRFPGA13

NCP51400

VTT_DDRFPGA24

MGTVCCAUX_L

MAX8869

MGTVCCAUX_R

MAX8869

EN_VCC1V8_FPGA

EN_UTIL_3V3

EN_MGTAVTT_FPGA

EN_MGTAVCC_FPGA

EN_VCCINT_FPGA

EN_VCCINTIO_BRAM_FPGA

EN_VADJ_1V8_FPGA

EN_MGTVCCAUX_R

EN_MGTVCCAUX_L

EN_SYS_1V8

EN_SYS_2V5_13

EN_SYS_2V5_24

ERP2U 750W
CPU 1 Power (8 pin)

16A

12V2 (x2) 12V3b (x2)

16A

12V_CPU1_PSUP

EN_VDD_DDRFPGA13

ISL6334

VDD_DDRFPGA13 VDD_DDRFPGA24

ISL6334

INA226
PMBus 0x41

INA226
PMBus 0x40

FPGA DDR0 FPGA DDR1

ERP2U 750W
CPU 0 Power (8 pin)

16A

12V1 (x2) 12V3a (x2)

16A

ISL6334

VDD_DDRCPU24

VDD_DDRCPU13

ISL6334

12V_CPU0_PSUP

INA226
PMBus 0x45

INA226
PMBus 0x44

EN_VDD_DDRCPU24

B_CDV_1V8

VDD_CORE_EN
VDD_OCT_EN_L2

IR3581
PMBus 0x??

VDD_CORE
0V9_VDD_OCT

MAX15301
PMBus 0x10

1V5_VDD_OCT

CPU

EN_1V5_VDD_OCT

Figure 4.1: The power tree of a modern two socket server system contains dozens of regulators, illustrated
here with the one for Enzian. Individual regulators are shown in white boxes and their control
signals are in blue with red dotted lines. The black lines connecting boxes are supplied voltages
and the orange boxes are end consumers of one or more power sources. The blue highlighted
region is used as an example for the remainder of this chapter.

28

4.2 Experience

power and clock levels can be exploited as security vulnerabilities [185, 150].
In order to deal with these more complex requirements, several solutions have

been developed, beginning with specialized hardware for power sequencing [77,
9]. These integrated circuits are called complex programmable logic devices
(CPLDs). They are reliable and inexpensive but still require configuration with
the correct sequence when the platform is manufactured. Moreover, system
designers, especially with an eye on the data center, demand more complete and
configurable board management than simple power sequencing, such as mon-
itoring and remote management, which is beyond the capabilities of hardware
regulator controllers.

This, coupled with the need to orchestrate increasing numbers of regulators
via software over networks such as low-speed serial buses (e.g., I2C) leads
ultimately to modern servers using a BMC as a complete platform management
system.

To my knowledge, the current published state of the art in industry does not
go beyond manually coded point solutions and no attempts at auto-generating
power sequencing code, let alone formal verification, have been made.

4.2 Experience

I was made aware of the complexity of power sequencing while involved in
building Enzian. [39] (cf. Chapter 2). Helping to design and build a system as
large as Enzian has exposed me to the importance and difficulty of correct power
sequencing in a modern computer. This problem is not apparent in the existing
public literature concerning smaller, simpler systems.

The Enzian mainboard is an eATX-format 22-layer board which has a per-
socket thermal design power (TDP) of more than 100W, and a total system TDP
of around 600W. The power tree consists of 25 discrete voltage regulators and
more than 30 separate power rails with complex sequencing requirements. This
complexity is increased by the heterogeneity of the system’s main components
leading to very different power sequencing constraints for the two sockets.

Much early ad-hoc work led us to appreciate the importance of separat-
ing concerns: dividing the task of correct sequence generation from both the

29

Chapter 4 – Declarative Power Sequencing

specification of platform parameters, and the labor-intensive task of faithfully
modeling regulator behavior, including quirks.

Even though we (like most other groups who face this problem) are only
working on a single design, both the design and our understanding of it have
evolved over time. This persuaded us that a more generalizable approach was,
indeed, worth the extra effort for us.

Platform parameters consist of minimum and maximum voltages on nets,
power topology information, and the like. Some of these parameters we could
control, but others were liable to change at short notice. For example, in our
case an error in board layout led to some regulators being replaced with a
different model partway between early prototypes and final hardware, requiring
an updated power tree. Also, as we evaluated the prototypes, and the tightness
of regulation (e.g., � · ' losses) and transient behavior of the power nets, we
gradually tightened (or occasionally loosened) the upper and lower voltage and
current limits for specific nets relative to the datasheet values, again requiring
updated parameters.

Between the first design and working hardware, the power sequences needed
to be redesigned and/or adapted repeatedly, and doing this manually required a
lot of time spent tediously changing one voltage after another and examining the
resulting current levels in the system.

The modeling of regulators, particularly those for the critical processor core
voltage supplies (our main chips draw more than 100 Amps at less than 1 Volt),
was a very time-consuming process.

Device quirks and minor areas of non-compliance with the standard for Power
Management Bus (PMBus) [182, 183], the protocol stack used by the BMC to
communicate with the regulators, can have dramatic consequences: In one case,
due to an interaction between the CPU core regulator’s PMBus interface and its
more fine-grained proprietary control registers, it would default to an output of
1.2 V on enable, well outside the maximum rating of the CPU, even though it
was notionally programmed to 0.9 V.

This was a hair-raising realization, as turning the system on with this faulty
sequence would have resulted in overvolting the CPU on Enzian. This would
have likely destroyed the only existing board at the time, throwing the project
back months. Luckily, we caught the mistake with our careful testing. The
solution here was to reprogram the output voltage after the regulator’s logic

30

4.3 Model

supply was enabled, but before its output was enabled. This is now incorporated
as a sequencing requirement in this device’s model, guaranteeing that future
generated sequences automatically incorporate this hard-won knowledge, which
would not be explicit in a hard-coded power-up sequence.

The large investment we had to make in faithfully modeling the behavior
of these components is preserved, and applied automatically to any updated
sequence for this board, or indeed wherever the same components are used in
future designs.

Enzian is designed with redundant configuration mechanisms: While the
current firmware sequences its power tree in software over PMBus, the hardware
itself also supports a traditional ‘hardwired’ power sequence where the enable
input of a regulator is driven (via a CPLD) by some logical combination of
control signals and the ‘power-good’ signals of other regulators.

However, whether the sequence is programmed in software, or wired-in di-
rectly, exactly the same problems exist, namely: what should the sequence be,
and how do we know that it is safe?

4.3 Model

In this section I describe how we developed our model of a power tree, with
reference to the full power tree of Enzian in Figure 4.1. Figure 4.2 shows a
representative section of this full tree, and will serve as our running example.
We consider the power tree as a directed graph, with two types of nodes:
components (IC1-4) and nets (12V_CPU1_PSUP, UTIL_3V3, VCCINT_FPGA,
VCCO_FPGA, EN_UTIL_3V3, EN_VCCINT_FPGA, EN_VCCO_FPGA). A directed
edge exists from a net to the input of either a regulator or load component (e.g.,
CPU). Likewise, an edge exists from a regulator output to the net it supplies.
Each net may only be driven by a single output.

While there are a huge variety of regulators, load devices and system designs,
the basic electrical laws, together with practical considerations, mean that at
the level of detail we need, all regulators and devices are essentially equivalent:
Regulators convert a small number of input voltages (power and logic) into a
small number of outputs, and with only limited exceptions (e.g., USB OTG

31

Chapter 4 – Declarative Power Sequencing

EN_VCCINT_FPGA

EN_VCCO_FPGA

ERP2U 750W
CPU 1 Power (8 pin)

16A

12V2 (x2) 12V3b (x2)

16A

12V_CPU1_PSUP

EN_UTIL_3V3

FPGA IC1

MAX20751

VCCINT_FPGA

IC3MAX15301 UTIL_3V3

IC2

MAX15301 VCCO_FPGA

IC4

Figure 4.2: Detail view of a power tree (highlighted in blue in Figure 4.1) that
illustrates sequencing requirements and high currents: IC1 (FPGA),
IC2 (MAX15301) that supplies UTIL_3V3, IC3 (MAX20751) which
supplies VCCINT_FPGA, IC4 (MAX15301) that supplies VCCO_FPGA,
and the 12V_CPU1_PSUP rail. The regulators are controlled by
enable signals: IC2 is enabled by EN_UTIL_3V3, IC3 is enabled by
EN_VCCINT_FPGA, and IC4 is enabled by EN_VCCO_FPGA.

32

4.3 Model

(1

out: 0 V

(2

out: 0 V

(3

out: 0 V (4 range:
0.5 V to 5.25 V

VCCO range:
1.65 V to 1.95 V

0 5.5 14
input voltage [V]

0

1

en
ab

le
sig

na
l

Figure 4.3: IC output voltage range as a function of inputs, for LVCMOS18 IO.

charging), power only ever flows from source to sink. Devices (e.g., CPUs)
accept some range of voltages, and require some ordering between the rails.

Except for systems with rechargeable batteries, which are beyond the scope
of the current work, the power rails thus always form a directed acyclic graph.
In all systems of which I am aware, regulators can be characterized by a range
of permissible input and output voltages and currents, and load devices by their
allowed supply voltages and a partial order between them that power-up must
respect. This model is applicable to a large range of systems, from embedded
devices with only a handful of regulators, up to the large server-class system on
which we evaluate our approach in Section 4.5.

The state of a net is its current nominal voltage (the model only considers its
DC value and ignores � · ' drops). The state of a regulator is the combined
state of its inputs, both physical (supply voltage, on-chip enable pin) and logical
(PMBus-commanded output voltage or enable signal).

The output of a regulator is a function if its inputs. Figure 4.3 illustrates
this for regulator IC4 which supplies net VCCO_FPGA (the I/O pin supplies),
whose value depends on the I/O standard in use, generally either 1.2 V (e.g., for
DRAM), 1.8 V or 3.3 V (e.g., for legacy CMOS ICs). Here, the IO standard
is LVCMOS18 which requires an I/O bank voltage between 1.65 V and 1.95 V.

33

Chapter 4 – Declarative Power Sequencing

The inputs to this regulator are two-dimensional: supply voltage and enable
signal. With enable deasserted, the regulator outputs 0 V. With enable asserted,
it can generate any voltage between 0.5 V and 5.25 V. Thus, its output range
(the set of outputs that we can instruct it to generate) is [0V] ∪ [0.5V, 5.25V].
The valid ranges for the output driving a net and all inputs supplied by the net
are intersected to compute the range of target voltages for that net, in this case
[1.65V, 1.95V]. If this regulator were able to supply only up to, say, 1.90 V, the
target interval would be reduced to [1.65V, 1.90V].

From the target range for a net (the static constraint) and the state diagram for a
regulator, we can infer dynamic constraints on its inputs which in turn become the
target for regulators higher in the tree, possibly after intersection with the input
requirements of other regulators/loads sharing the same net. These constraints
are then iteratively filtered back toward the root nodes, such that every net has
a target range. In this example, to produce an output in the 1.65 V–1.95 V

range, the supply net for IC4 (12V_CPU1_PSUP) must be between 5.5 V and
14 V, and its enable signal must be asserted. In this instance the supply net’s
requirement is satisfied by the EPS12V power supply’s guaranteed output range
of [11.4V, 12.6V].

Looking again at Figure 4.2, IC3 introduces a different type of constraint:
ordering. This regulator has two supply inputs: one for the supply net to be
regulated down, and the other for its internal logic. Until its internal logic is
powered, it’s impossible to communicate with the regulator, and thus enable its
output, even if the main supply is available. In this case, we’ve introduced a
recursive element to sequence construction once this logic supply is produced
by another regulator that we must configure. This case is easily handled by
the model: this regulator’s equivalent of Figure 4.3 has an additional axis,
corresponding to its logic supply. This in turn generates a dynamic constraint
on the logic regulator (IC2) output, forcing us to enable it before attempting to
enable IC3.

The final constraint imposed by the model is an ordering between the voltage
rails for a given IC. While the supply nets for IC3 may be safely enabled in
any order, this is not true for the CPU and the FPGA. As already mentioned,
incorrect power sequencing can lead to latch-up and instantaneous destruction
for ICs whose normal power consumption is in the hundreds of amps: The core
regulators will happily supply 200 A into a short circuit.

34

4.3 Model

C1 C2 C3 C4

time [ns]

vo
lta

ge
[m

V
]

Figure 4.4: Illustrative example of a manufacturer-supplied sequencing graph
for an IC. The voltage signal represented by the dotted line must
only be ramped up once the other signal has stabilized, i.e., C3 > C2.

The sequencing requirements for an IC are generally supplied by the man-
ufacturer, either as a recommended/mandated power sequence or in a diagram
such as Figure 4.4.

To model this we associate each state change of a net with an initiate event

(e.g., enable signal asserted) which triggers the state change and a complete

event (e.g., = consecutive voltage measurements within range after which the
conductor has stabilized in the new state).

For the CPU’s main power supplies, the VCCINT_FPGA initiate event must
happen after the UTIL_3V3 complete event:

) (Initiate(VCCINT_FPGA)) >) (Complete(UTIL_3V3))

Additionally, we have the natural condition that complete events always hap-
pen after the initiate event for the same net:

) (Complete(net)) >) (Initiate(net))

This gives us a partial order on events.

35

Chapter 4 – Declarative Power Sequencing

The goal of a power sequence is to place leaf components – those with
no outputs, e.g., the CPU – in a specified power state. We term these leaf
components consumers. To generate a valid power sequence we must:

1. Find a platform state that satisfies all consumer constraints and all other
input constraints (static and dynamic).

2. Find an order of actions that transitions the platform into that state while
observing the partial ordering of all relevant events.

4.4 Algorithms

As discussed in Section 4.3 there are two correctness criteria for a power-up
sequence that we tackle separately. First, we compute a valid platform state by
casting the problem as a constraint satisfaction problem and using a constraint
solver. After that, we use the partial order on the events to derive a sequence
that transitions the platform from its current state to the new state. If no such
sequence exists, we compute a new solution for the platform state and try again.

4.4.1 Computing the platform state

Given a set of consumer constraints that describe the desired power states of the
consumers (CPU and FPGA in the case of Enzian), we first need to compute a
platform state that satisfies these constraints. This means we need to propagate
these constraints back through the tree and for each output, select a state that
satisfies the static and dynamic input constraints for the attached net.

A constraint satisfaction problem is defined by a set of variables, a set of
domains that define what values each variable can take, and a set of constraints
that define relations between subsets of variables that any assignment for the
variables must satisfy. We cast the problem of computing a valid platform state
as a constraint satisfaction problem as follows: The set of variables consists
of a variable F8 , 1 ≤ 8 ≤ (number of nets) for each net in the platform, that
represents the state of the output connected to that net. The variables can take
on integer values that represent the voltage of the output in millivolts (mV) or 0

36

4.4 Algorithms

and 1 in the case of logical signals. The set of constraints is composed of static
constraints, dynamic constraints, and consumer constraints.

The static constraints ensure that all the maximum ratings for the connected
inputs are observed, i.e., for each net we have a constraint

number of inputs∧

9=1

low(" 9) ≤ F8 ≤ high(" 9)

For each input 9 connected to net 8 this ensures that the net’s state is within the
range of the input’s maximum rating, i.e., at least its minimum rating low(" 9)

and at most its maximum rating high(" 9).
The dynamic constraints connect the components’ outputs to their inputs:

they ensure that for each output that gets configured into a specific state the
inputs of the same component have the appropriate values. In the example in
Figure 4.3 showing the possible states for IC2, this means the output can fall into
one of four regions. Each one of these regions then in turn imposes dynamic
constraints on the inputs if the output value falls within the region. In general
for each component we add constraints of the following form:

∨

(8∈state regions

low((8) ≤ F8 ≤ high((8) ∧ �Si

Each element in the disjunction represents the situation wherein the output
connected to net F8 is in a particular state region (8 , i.e., between low((8) and
high((8). The term �(8 in each element represents the region-specific dynamic
constraints on the inputs: they impose the requirements of the state region on
the component’s inputs and propagate them back up the tree. Each �(8 is of the
following form:

number of inputs∧

9=1

low(� 9)(8 ≤ F 9 ≤ high(� 9)(8

Every element of the conjunction takes care of propagating the dynamic require-
ments to one of the inputs � 9 by ensuring that it will be configured inside its
required bounds for state region (8 , i.e., between low(� 9)(8 and high(� 9)(8 .

37

Chapter 4 – Declarative Power Sequencing

Finally, we add the consumer constraints which for each consumer constrain
the values of the nets that they are connected to according to their desired power
state:

number of inputs∧

9=1

low(� 9) ≤ F 9 ≤ high(� 9)

Now that we have encoded the problem of finding a platform state that con-
forms with the consumer constraints for a specific power state into a constraint
satisfaction problem, we can use standard constraint solving techniques to ob-
tain a state for every output. We now compute a set of actions that ensure every
output is configured into this state and all sequencing requirements are observed.

4.4.2 Computing the sequence

We have seen in Section 4.3 why it is important for a sequence that transitions
the platform from a current state into a new state to observe the sequencing
requirements. We have also seen that every change of output state is associated
with an initiate and a complete event and that there is a partial ordering between
those events. Every initiate event then translates to an action that triggers a state
change and every complete event to a check that a state change has successfully
completed, e.g., reading a voltage sensor. By topologically sorting the events
we obtain a sequence that transitions the platform from the current state into
the new state, observes the partial order between the events and therefore also
conforms with the sequencing requirements of the platform.

4.4.3 Full power-up sequence

Given a power state for each consumer in the platform and corresponding con-
sumer constraints we can now compute a platform state that satisfies these
constraints. Given two of these states we can also compute a correct sequence
that transitions the platform from one to the other. The primary chips on Enzian
transition through multiple intermediate power states between being off and fully
operational or vice versa. This is illustrated in Figure 4.5.

The columns are the CPU’s power states and the rows are the FPGA’s. Each
tile of the grid then represents a potential platform state which satisfies the

38

4.4 Algorithms
FP

G
A

po
w

er
sta

te
s

CPU power statesStart

End

valid power state

invalid power state

selected path

backtracking

Figure 4.5: Finding a path through the state table.

consumer constraints for the corresponding power state of both CPU and FPGA.
The upper left corner is the state when both chips are off and in the lower right
one both chips are fully operational. We can compute such a platform state
using the approach in Section 4.4.1.

To transition the platform from powered off to fully operational now means
finding a path through the grid. In each step we have the choice of only
advancing in one of the sockets’ power state sequence or both at once. In the
grid this corresponds to going right or down vs. diagonally right and down.
Some combinations of consumer constraints might be mutually exclusive, i.e.,
there is no platform state that can satisfy both consumer constraints at once.
These combinations are illustrated with a red cross-hatched square in the figure.
This means we can also get stuck and need to backtrack to the last tile in the
grid where we still had a choice and try a different path. Such a situation is
illustrated in the figure towards the lower left with the orange hatched tiles. If
we end up with no choices left, it means that the state transition is infeasible.
This can either be sign of a badly designed platform or a bug in the model.

Once we have found a path from the origin state to the desired state, in our
example from “off” in the upper left to “fully operational” in the lower right,
we can compute the partial sequences that transition the platform between tiles
using the approach in Section 4.4.2.

We obtain the full sequence by concatenating all the partial sequences from
the individual steps.

39

Chapter 4 – Declarative Power Sequencing

4.5 Evaluation

I begin the evaluation by showing that using the model and a conventional
constraint-satisfaction algorithm, we can indeed generate a working power se-
quence which successfully configures the voltage regulators of Enzian (Sec-
tion 4.5.1). I then show that this is not only possible, but that the event sequence
can be derived efficiently from the model with reasonable computational effort
(Section 4.5.3 and Section 4.5.2). Finally, I provide a user-experience report
about the efforts needed in using our tool to support a new hardware platform
topology (Section 4.5.4) and adapting it to a new power management interface
provided by the BMC (Section 4.5.5).

We built an implementation prototype in Python which is capable of deriving
correct power sequences for Enzian. The tool converts the event graph produced
by the constraint solver operating from the platform description into a sequence
of power management API invocations on the BMC. We executed all perfor-
mance experiments on a desktop machine with an Intel Core i7-6700K CPU @
4 GHz and 32 GB DDR4 RAM. We then ran the generated Python program on
Enzian’s real BMC to configure the power sequence and bring up the processors
of the board.

4.5.1 Generating working power sequences

In this qualitative evaluation I demonstrate that our tool is able to generate a
working power sequence capable of bringing up the Enzian platform.

We modeled the power tree of Enzian using the above-described semantics and
used the tool to generate a power sequence. We then ensured that the platform
is turned off, i.e., all voltage rails are off except for the stand-by power. Next, we
executed the generated Python program containing the command sequence to
power up Enzian. This transitioned the platform from the off-state to the on-state
where both sockets are fully powered on and operational. We then verified that
the voltages are correctly set according to the specification.

First, we analyze the generated power sequence and the resulting Python
program. The initial lines of the power sequence can be seen in Figure 4.6.
Overall, the generated sequence consists of 28 discrete steps. These are imple-
mented as several calls to the power management API that executes initiate and

40

4.5 Evaluation

1 init_device(’isl6334d_ddr_v’)

2 init_device(’pac_cpu’)

3 init_device(’pac_fpga’)

4 gpio.set_value(’C_RESET_N’, False)

5 gpio.set_value(’C_PLL_DCOK’, False)

6 gpio.set_value(’B_PSUP_ON’, True)

7 wait_for_voltage(’3v3_psup’, v_min=3.135, v_max=3.465,

device=’pac_cpu’, monitor=’VMON3_ATT’)

8 wait_for_voltage(’12v_cpu0_psup’, v_min=4.702, v_max=5.197,

device=’pac_cpu’, monitor=’VMON1_ATT’)

9 wait_for_voltage(’12v_cpu1_psup’, v_min=4.702, v_max=5.197,

device=’pac_fpga’, monitor=’VMON1_ATT’)

10 wait_for_voltage(’5v_psup’, v_min=4.750, v_max=5.250,

device=’pac_fpga’, monitor=’VMON2_ATT’)

11 wait_for_voltage(’5v_psup’, v_min=4.750, v_max=5.250,

device=’pac_cpu’, monitor=’VMON2_ATT’)

12 init_device(’clk_main’)

13 init_device(’clk_cpu’)

14 init_device(’ir3581’)

15 init_device(’ir3581_loop_vdd_core’)

16 init_device(’ir3581_loop_0v9_vdd_oct’)

17 power.device_write(’ir3581_loop_vdd_core’, ’VOUT_COMMAND’,0.96)

18
19 # more lines follow ...

Figure 4.6: First lines of the generated power sequence

wait-for-completion events. This results in a Python program with a total of 74
lines for Enzian. The majority of these lines (61 in total) are directly executing
power sequencing actions on the voltage regulators. The remaining 13 lines are
initializing the power management framework of the BMC and creating required
software objects.

When executing the generated Python program, we observed that the power
rails of Enzian were configured correctly and the CPU and FPGA were brought
into an operational state.

Comparing the generated power sequence to the manually derived one we
observe three key differences:

Ordering The order of the executed steps differs between the manually written
program and the generated one. This difference is due to the partial
ordering of the sequence steps. Consequently, there are multiple correct
sequences to bring up a platform. Our tool is even capable of generating

41

Chapter 4 – Declarative Power Sequencing

multiple correct sequences by selecting a slightly different path through
the power states resulting in a different power sequence. However, the
end state is always the same and thus for the purpose of this work all
sequences are equivalent.

Checks The manual sequence always inserts checks to verify that the complete
events actually have happened before proceeding to the next step. The
generated sequence will do multiple steps in parallel if the sequencing
requirements allow it and only then insert checks to verify the steps have
completed.

Default States The manual sequence explicitly sets the voltage for every reg-
ulator. The generated sequence omits this if our tool could infer from the
model that the regulator was already configured correctly at that stage in
the sequence.

Based on the results obtained in this evaluation we can conclude that the tool
is indeed capable of generating a working power sequence that correctly powers
up Enzian.

4.5.2 Efficient state generation

We now quantitatively evaluate the state generation process and will see that
computing a platform state satisfying a set of consumer demands is efficient and
feasible within acceptable time limits.

We populated the model with the power tree description of Enzian. We then
measured the time it takes to evaluate the model and to compute the new platform
state for the three combinations of consumer demands listed in Table 4.1. This
evaluates the algorithm of Section 4.4.1.

For each problem P1 to P3, we measured 500 runs of the experiment. Note that
the constraint solver uses backtracking and thus may explore the search space in
a different order each time, depending on the order in which the constraints are
presented. To get a better representation of the expected runtime we randomized
the order of constraints to compensate for better and worse paths through the
search space.

42

4.5 Evaluation

0 0.5 1 1.5 2

0

20

40

60

runtime [s]

#
m

ea
su

re
m

en
ts

0 200 400 600 800

0

1

2

3

4

5

runtime [s]

#
m

ea
su

re
m

en
ts

outliers

(a) Solving times for problem P1

0 0.5 1 1.5 2
0

100

200

runtime [s]

#
m

ea
su

re
m

en
ts

0 1 2 3 4 5
0

1

runtime [s]

#
m

ea
su

re
m

en
ts

outliers

(b) Solving times for problem P2

0 0.5 1 1.5 2
0

100

200

runtime [s]

#
m

ea
su

re
m

en
ts

0 2 4 6 8 10
0

1

None

runtime [s]

#
m

ea
su

re
m

en
ts

outliers

(c) Solving times for problem P3

Figure 4.7: Histograms of solving times (to find one solution) for the three
problems P1, P2, and P3.

43

Chapter 4 – Declarative Power Sequencing

Problem CPU power state FPGA power state

P1 Powered on Powered on
P2 Powered on Powered off
P3 Powered off Powered off

Table 4.1: An overview of problem instances P1 to P3

The results are shown in Figure 4.7. For better visibility of the data, there
are two histograms: one with the regular measurements showing runtime on
the x-axis and the number of runs on the y-axis and one with the outliers above
two seconds execution time. For all problems, we observe that the majority of
experimental runs completed in less than 1.0 second with just a few outliers.

The complexity of the problems decreases from P1 to P3 as fewer components
need to be powered, thus reducing the total number of constraints in the system
(P1 has both processors on, while P3 has both switched off). This is reflected in
the results of P1 to P3, where the median execution time decreases with fewer
powered-on components.

As mentioned in the experimental setup we randomized the order in which the
constraints are presented to the solver. The outliers correspond to runs where
the solver happened to explore the search space in a particularly inefficient way,
such that it had to backtrack more often. We also see a larger number of outliers
with more components turned on. This is due, in part, to the DRAM voltages
being included in those configurations. While they are showing up as leaves
in the power tree, exploring their state is mostly irrelevant to finding a power
sequence for initializing the board. However, the general algorithm is not aware
of this and can spend time exploring the DRAM voltage regulators resulting in
runtime outliers shown in Figure 4.7. A possible solution to this would be to add
additional constraints to avoid these types of situations, but we did not explore
this option further as the number of outliers is very small.

I have shown that the evaluation of the power state space search algorithm from
Section 4.4.1 is efficient, usually taking less than a second, and thus it is feasible
to evaluate during runtime in response to user demands for re-configuring the
power state of the platform.

44

4.5 Evaluation

4.5.3 Efficient Sequence Generation

We now quantitatively evaluate the time it takes to compute a complete boot
sequence or a partial reconfiguration using the algorithm from Section 4.4.3.
In other words, I will show that it is possible to efficiently compute a sequence
from one platform state to another.

We expressed the states of the main processors as either powered on or off
which we call the initial state of the system. Then we toggled the power state of
one or both of the chips to obtain the target state. Note that the underlying model
captures all intermediate power states including the initial and target states. By
enumerating all possibilities we obtain a total of 16 power states, four of which
do not change the power state at all and are not of interest. From the remaining
twelve states, we can further eliminate the ones where the FPGA is powered
without the CPU being powered. This was a constraint on Enzian at the time the
experiment was performed. This leaves us with six total combinations of initial
and target states shown in Table 4.2 to evaluate. For each configuration P1-P6
we measured the time to generate the transition sequence between the two states.
We repeated each measurement three times.

I present the runtime measurements for all six configurations in Table 4.3.
Overall we observe that in tendency the runtime grows with the number of
transitions, and that ON transitions are more expensive than OFF transitions.
Additionally, finding a transition sequence for the FPGA is more expensive than
for the CPU. However, even in the worst case, the execution time is less than
three seconds.

The dependence on the number of transitions is intuitive: When only one
chip has to be transitioned, the state table illustrated in Figure 4.5 collapses
to a single dimension and the problem is reduced to computing intermediate
platform states. ON transitions are more expensive than OFF transitions as the
components on Enzian have more ordering constraints when turning on than
when turning off, hence it is more likely backtracking is required. Finally,
the power sequence for the FPGA involves more components on the board and
finding a correct sequence for it is therefore harder.

With a measured worst case execution time of three seconds, pre-computing
sequences offline is certainly feasible. Even online calculation at boot would be
acceptable compared to other boot steps such as RAM initialization which can

45

Chapter 4 – Declarative Power Sequencing

Problem Consumer Initial state Target state

P1 CPU Powered off Powered on
FPGA Powered off Powered on

P2 CPU Powered off Powered on
FPGA Powered off Powered off

P3 CPU Powered on Powered on
FPGA Powered off Powered on

P4 CPU Powered on Powered off
FPGA Powered off Powered off

P5 CPU Powered on Powered on
FPGA Powered on Powered off

P6 CPU Powered on Powered off
FPGA Powered on Powered off

Table 4.2: Overview of problem instances P1 to P6

Problem Runtime [s] #Transitions

P1 2.7 2x ON
P2 1.3 1x ON
P3 1.7 1x ON
P4 0.4 1x OFF
P5 1.3 1x OFF
P6 1.5 2x OFF

Table 4.3: Measurements (average of three runs) obtained for the six different
combinations of consumer transitions possible on the Enzian platform

46

4.5 Evaluation

take a couple of minutes to complete.
In this evaluation I have shown that the entire power sequence of a platform

can be generated within a few seconds and thus presents a viable option for both
offline and online evaluation.

4.5.4 Re-computing sequences for new revisions

New board revisions or platforms have different power trees which must be
modeled to generate a power sequence. I now elaborate on our experiences in
expressing the Enzian platform using the modeling language.

There are essentially two steps involved: 1) obtaining the constraints of the
different voltage regulators on the board, and 2) capturing the regulator topology
in the power tree. We had to do both steps for both the manually-derived sequence
and the model population.

For populating the model, we can independently focus on specifying power-
tree topology and the voltage-regulator constraints. In contrast, when manually
deriving the power sequence we had to pay attention to timing requirements
and other constraints, as well as the power-tree topology. Adapting an existing
platform to a new revision can be done by simply replacing the description of
a voltage regulator with the new one in isolation without worrying about the
effects it has on the power sequencing commands to bring up the board.

When using our tool one can express each regulator in isolation and form the
topology step-by-step without worrying about timing and voltage constraints. I
expect this approach to be less susceptible to errors than designing the sequence
manually.

4.5.5 Adapting the tool

In this part of the evaluation we qualitatively evaluate the user experience,
specifically the efforts needed to adapt the tool to the BMC-specific power
management interface.

In its initial version, the tool was built against a different firmware image.
When upgrading the firmware, the tool was no longer compatible with the
Enzian BMC’s firmware, and thus needed to be adapted to support this major

47

Chapter 4 – Declarative Power Sequencing

change in the power management API. We adapted both the manually derived
sequence and our tool to the new interface.

Adapting the sequence manually required consulting various datasheets to
obtain knowledge about the sequencing requirements of the various components
and how they can be expressed using the API provided by the firmware. The
previous sequence did not provide enough information to adapt it and required
a significant amount of work reading the datasheets and carefully examining the
schematics.

In contrast, we did not have to adapt the model itself for this change in
the power management API because all knowledge about the power tree (with
its components and constraints) were already encoded in the model. This
completely avoids consulting the platform datasheets. All that is left to do is
adapting the code generator of the tool to the new API.

Thus, adapting the code generator took roughly a single person-day, while
understanding and adapting the entire power sequence manually to the new API
consumed over three person-weeks. Our experience shows that supporting a new
power management interface resulted in significantly less work than to manually
deriving and adapting the bring-up sequences to the new firmware.

4.6 Related Work

As I remarked in Section 4.1, there is a dearth of published work on board
management software. Nevertheless, our work is closely related to other, neigh-
boring fields which I discuss here.

The problem of deriving a correct power-up sequence bears some similarity
with the problem of a device driver correctly initializing and controlling the
operation of a device. Device drivers not only contribute a large amount of
code to systems software [93], but are also a significant contributor to bugs
and errors [31]. Dingo formalizes driver protocols to make the interaction with
devices unambiguous [155].

Writing device drivers is inherently tied to the operating system architecture,
but device driver synthesis [156, 157, 198] enables the generation of OS-specific
device driver code based on a specification, and thus automatically generating
the right control sequence for the device. Beyond drivers, there is early work on

48

4.6 Related Work

synthesizing most of the hardware-specific parts of an OS based on specifica-
tions [85]. Our work similarly applies program synthesis techniques to derive
power sequences for the BMC.

Inside the OS (as opposed to BMC firmware), constraint solving has been
applied to a variety of OS techniques both online and offline to select a whole-
system configuration which satisfies current requirements.

For example, the problem of configuring PCI Express devices under a set of
root complexes has been expressed in Prolog and solved using constrained logic
programming techniques [164]. Similar methods have been applied to data
center network configuration [137] or synthesizing cluster management code
in distributed systems [181]. Spex [204] goes further by attempting to infer
configuration constraints from the program source code, which is not possible
in our case. Cocoon [154] uses a hierarchical design process to specify the
configuration of software defined networks to obtain a correct-by-construction
initialization of the network controller.

Outside the field of OS design, software-based industrial control systems
consist of a controller and a plant forming a closed loop system; software running
on the controller must correctly configure the plant. QKS synthesizes correct-
by-construction control software from the specification of a plant model, an
implementation specification and the safety and liveness requirements [7, 128].

Closer to our goal of platform power management, for modern servers and
phones it is usually the OS’s responsibility to implement power management
policies – deciding which components to power on or turn off is important to
minimize the power requirements. Xu et al. [204, 203] argue for a centralized
power management agent, which decides when devices should switch between
the discrete enabled or disabled states based on quality of service (QoS) re-
quirements and specification of power states. QoS can also be used by agents in
embedded systems to automatically find appropriate dynamic power states [72].
Benini et al. [20] provide a survey of design techniques for system-level dynamic
power management.

In contrast, our work is not trying to decide when devices should transition to
different power states but provide help in how these transitions are implemented
at a lower level.

We are also not the first ones to apply more formal techniques to power
management: Gupta et al. [75] applied formal methods to dynamic power

49

Chapter 4 – Declarative Power Sequencing

management with the goal to minimize the overall power consumption, which as
already stated above is policy that could be implemented using our mechanisms.
p-FSMs model system-level power management including control mechanisms
and operating states [172]. Like us, the authors argue that the application of
formal methods is essential to cope with the complexity of system-level power
management in order to meet energy, power, and thermal constraints. They
focus on the design of power management systems, and it is not clear whether
their model is able to handle individual regulators as is required for our work.
While they model-check their representation of an SoC, they do not demonstrate
controlling physical hardware with their technique.

Other approaches focus on providing an interface between the main OS and
the BMC or other power sequencing functionality. The Advanced Configuration
and Power Interface (ACPI) [192] defines mechanisms to control the power state
of the entire system, e.g., transitioning to sleep or waking up. Moreover, the
ACPI tables include information about the power states of the motherboard
devices and their connections, including methods to change the power state of
the devices. Like the work mentioned above, ACPI operates at a higher level
than our tool: it provides the OS on the CPU(s) of a platform with information
about the power management capabilities of the platform but does not deal with
how those capabilities are implemented.

Similarly, Devicetree [55] provides information about the hardware platform
such as device addresses, amount of memory, processors, and existing power
and clock domains to system software. The OS uses this information to find
the device and its power and clock domains. However, information about power
domains encoded in the devicetree does not include voltage levels or supported
input/output voltages and is thus not suitable for our purpose.

4.7 Conclusion

In this chapter, I have shown how we applied computer science techniques to
an understudied problem in building and operating a computer: how to turn the
machine on in a safe and efficient manner.

While not well-known in the systems community, the power sequencing prob-
lem is real and becoming more significant as systems become increasingly com-

50

4.7 Conclusion

plex, and the consequences of getting it wrong become more serious (whether
these consequences are security vulnerabilities or permanent damage to the
hardware).

I have shown that generating a correct power-on sequence can be reduced to a
constraint satisfaction problem, and that even a relatively unoptimized solver can
compute a solution for a realistic, complex server in a relatively short amount of
time – to the extent that it would be practical online at boot time. I will discuss
further improvements to the sequence generator in the next chapter.

However, this solution can only be achieved if the problem can be posed to
the solver in a suitable manner. Consequently, I have presented a representation
of a machine’s power tree that captures both the detailed topology of a modern
server platform, and the behavior of individual power regulators and other
components at a sufficient level of detail to generate useful results. I look
forward to the release of more well-documented open hardware on which to
evaluate our approach.

Even with a single system design though, our direct experience has been that
this effort to create a more general solution has already paid off. We were
prompted to explore it by the effort (and nerve) required to create a power-on
sequence manually and interactively, and by the lack of any existing automated
solutions to this problem, regardless of whether the resulting sequence was to
be executed in software by a BMC or programmed into hardware in a CPLD.
Having done the work to model hardware platforms, I am confident that applying
it to another server design would be both valuable (in time saved) and low-effort.

All the code, including the power topology model for Enzian, is available as
open source1.

1https://github.com/Sockeye-Project/decl-power-seq

51

https://github.com/Sockeye-Project/decl-power-seq

5
Dynamic Power Management

In the last chapter we have seen how we can generate power sequences from
a platform model. The presented approach works well for generating sequences
offline. For managing a platform at runtime however, we need to be able to
react to changes in the hardware. If, e.g., the current draw on a power rail is
too high, we need to be able to bring the platform back into a safe state. One
way of achieving this is to also use our model at runtime. Once we detect that
the platform has entered a degraded state, we could then generate a sequence
on demand that transitions the platform back into a safe target state. For this
we need two things. We need to be able to infer the platform model state that
the hardware is in from sensor readings. We then also need faster sequence
generation time to be able to react to the changes in time. There is however
a caveat: The BMC is connected to the regulators via low speed buses like
I2C. A current spike can destroy expensive hardware much faster than we can
react in software. For the immediate response we will therefore always need the
regulators.

In this chapter I am going to present additions to the model from Chapter 4
and a new algorithm for state generation in order to explore the possibility of
online sequence generation. In the end I will also present an alternative solution
for a power manager and discuss the trade-offs.

53

Chapter 5 – Dynamic Power Management

(1

out: 0 V

(2

out: 0 V

(3

out: 0 V

(4 range:
0.5 V to 5.25 V

0 5.5 14
input voltage [V]

0

1

en
ab

le
sig

na
l

Figure 5.1: Updated regulator model. The arrows depict the partial order be-
tween states. The solid green arrows mark the natural sequencing
path. The dashed red ones the alternative path we exclude to turn
the partial order into a total order.

5.1 Changes to the model

We leave the structure of the model described in Section 4.3 unchanged: a di-
rected graph with components and nets as nodes and edges between components
and nets if the component is connected to a net. A net can also still only be
driven by a single component i.e., a net always connects to exactly one output of
a component and potentially many inputs of other components. We will however
change the component model.

First, we introduce a partial order on a component’s states. The states are
ordered from lower power states to higher power states. What constitutes a lower
power state is component specific, but usually it means fewer of the component’s
inputs are powered or enabled. In Figure 5.1, the partial order is as follows

(1 < (2 < (4 and (1 < (3 < (4

State transitions can only happen along the edges of the graph induced by

54

5.1 Changes to the model

the partial order but both from smaller to larger, and from larger to smaller
states. A monotonic sequence is a sequence where each component only either
transitions towards higher states or lower states. A sequence is still monotonic
if some components transition upwards and others downwards, as long as no
components change direction.

We also allow states to be excluded. The more natural way to sequence the
component depicted in Figure 5.1 is to first power it and then enable it. To model
this, we can exclude state (3 which turns the partial order on the component
states into a total order. Total orders on component states are desirable as they
simplify the sequencing problem by reducing the search space. However, they
also restrict the expressiveness of the model. Enzian can be modelled with all
components having total orders on their states and this is likely the case for
most platforms. However, with no other platform available with the necessary
documentation, I could not validate this assumption.

The second change we introduce to the model is a restriction on the re-
quirements that component states can impose on nets. We impose that the
requirements for a net can only change in one of the transitions between states.
For regulators (non-leaf components), this for one means that every input axis
can only have a single transition point (this is already the case in Figure 5.1).
It also means that the output capabilities can only change once, usually from
“no output” to “output in a specified range”. These requirements are too restric-
tive for consumers: consider a consumer with an “off” state, an intermediate
power state and a high power state. Further, assume that there is an input which
needs to be off for the “off” and high power states but on for the intermediate
power state. With the single-change requirement, this consumer could not be
modelled. While this might be a constructed example, these requirements also
prohibit an input from needing a low voltage for a lower power state and a
higher one for a higher power state. This would exclude dynamic voltage and
frequency scaling (DVFS) power states. We therefore do not enforce this single-
change requirement on consumers. A single-change sequence is a sequence
where all components obey the single change criterion. A platform with com-
ponents that do not obey the single-change criterion can still have single-change
sequences between states that do not need any requirement on nets to change
more than once. All regulators on Enzian fulfil the single-change requirement.
Again, while not validated, this is likely the case for most platforms. Enzian’s

55

Chapter 5 – Dynamic Power Management

main consumers, the CPU and FPGA, do not support DVFS and also fulfill the
criterion.

In the next section we will see, how monotonic and single-change sequences
help improve the sequence generation time.

5.2 New algorithms

As in described Chapter 4, there are several steps to compute a full power-up
sequence: First, we need to extend a partial platform state with constraints
for the consumers to a full platform state. For this step, I will present a new
algorithm in Section 5.2.1. We then need to compute a sequence to transition
the platform into this new state. We do this with the same algorithm as before
(Section 4.4.2). This algorithm however can only find sequences between two
states where any given net only changes its value once. There is nothing however,
that guarantees this in the case when multiple consumers transition through a
sequence of intermediate states to their desired target states. In Chapter 4 we
therefore needed to piece together the sequences between intermediate consumer
power states. As described in Section 4.4.3, this involved finding a feasible
interleaving of consumer power state transitions. Monotonic single-change
sequences however do fulfil this requirement. We can therefore generate any
such feasible sequence between two platform states in a single invocation of
the sequence computation algorithm. This also means that given the current
platform state and some target consumer states we also only need a single
invocation of the state computation algorithm. On Enzian all sequences are
monotonic and single-change. However, even on platforms that do, e.g., support
DVFS, the requested transitions would normally be between two DVFS states.
Such a transition is still feasible with a monotonic single-change sequence.
Only transitioning through several DVFS states in the same sequence would
need a fallback to the approach in Section 4.4.3. In practice, such sequences are
however unlikely to be useful.

56

5.2 New algorithms

5.2.1 Computing the platform state

Compared to Chapter 4 we recast the problem of computing platform states as
an integer linear program. Similar to a constraint satisfaction problem a linear
integer program is defined by a set of integer variables and linear constraints
on these variables. Additionally, an integer linear program has a cost function
consisting of weights for the variables. The cost function is computed by
summing up the products of variable weights and variable values. Integer linear
program solvers can then find solutions that optimize (in our case minimize) this
cost function.

The variables in our program are the states of the component. There is a
variable B8, 9 for each state (9 of each component �8 . The variables are boolean,
so 0 ≤ B8, 9 ≤ 1. The first constraints we add are to ensure that each component
is only assigned exactly one state. For each component �8 we add a constraint
of the form

number of states∑

9=1

B8, 9 = 1

Next, we need to make sure that the states of components connected to the
same net are compatible. So for each pair of components �1 and �2 that
are connected to the same net (input or output), we exclude combinations of
states that are incompatible. Two states B1, 9 and B1, : are incompatible if they
have non-intersecting requirements for the same net. For all of these we add
constraints of the form

B1, 9 + B2,: ≤ 1

Lastly, we need to make sure that the consumers are in the desired states. For
each consumer �8 that needs to be in state (9 we add a constraint of the form

B8, 9 = 1

The weights for the cost function we assign such that lower power states
(according to the partial order on component states) are preferred. This is to
prevent a solution from arbitrarily turning on regulators if they are not actually
needed to satisfy the consumer state requirements. Concretely, the weight F8, 9

for state (9 is then assigned as follows

F8,: = 3 9 · E

57

Chapter 5 – Dynamic Power Management

The value 3 9 is the distance of state (9 to the closest minimal state in the directed
graph induced by the partial order (0 for minimal states). The value E encodes
the strength of the preference for lower power states. We used 1000 in our
prototype.

We recover the platform state from a solution to this integer linear program
by assigning each component �8 the state (9 for which B8 9 = 1. While solutions
to the constraint satisfaction problem described in Chapter 4 directly yielded
the values for the nets, we need an additional step here: for each conductor, we
find the valid range of values by intersecting the requirements that the states of
the connected components impose. We can then, e.g., pick the midpoint of the
interval to maximize the margins for the net.

The motivation for recasting the problem as an integer linear program is
that we can easily encode the preference for lower power states for components
using the partial order on states that we introduced. The additional step to
recover the full platform state from the solution of the integer linear program
can be efficiently computed: for each net we only need to intersect as many
intervals as there are components connected. The less efficient part is adding
the incompatibility constraints for component states on the same net: here
we need to pairwise compare the requirements of all states of the connected
components. This however, only has to be done once and can be pre-computed.
We will see its impact on solving time in the next section.

5.3 Evaluation

We implemented a prototype of the new sequence generator in Rust. To estimate
the new implementation’s applicability to online power management we need to
know how fast it can generate sequences and how well it scales with platform
size.

We therefore conduct the following experiment: We create a synthetic plat-
form parametrized in the number of sockets. The power tree for each socket
closely resembles the CPU socket’s power tree on Enzian. We instantiate the
platform with 1 to 10 sockets and generate sequences to transition the platforms
from an all off state into an all on state and vice versa. We run the generation
for each platform 5 times and record the average running time for the differ-

58

5.3 Evaluation

1 2 3 4 5 6 7 8 9 10

500

1,000

1,500

2,000

2,500

CPUs

tim
e
[m

s
]

pre-computation
state resolution
sequence computation

Figure 5.2: Scaling behavior of sequence generation time with number of sockets

ent stages of the sequence generation: pre-computation, state resolution and
sequence computation. For real-world applicability of the results we run the
experiment on the Enzian Zynq-7000 BMC with two Armv7 Cortex-A9 cores
and 1 GB of DRAM.

The results are shown in Figure 5.2. I only show the plot for the power-on
sequences as there is no performance difference between the two directions.
Error bars are also omitted as the variance is negligible. We can see that the
pre-computation always takes about 30% of the time, state resolution about 65%
and sequence generation 5%. For up to 4 CPUs sockets, the sequences can
be generated in under 0.5 s and for up to 6 in under 1 s. For 10 sockets the
generation takes about 2.5 s.

The new implementation can generate sequences for moderately sized sys-
tems with 1 to 6 sockets in under a second. The pre-computation time only
has to be spent once and can be done in advance, e.g., at BMC boot time.
Given that emergency fault responses have to be implemented in the regulators
themselves anyway, this is acceptable performance. The sequences we generate
here correspond to the transitions for P1 and P6 in Section 4.5.3. However, our
synthetic platform has only CPU sockets and the FPGA socket on Enzian is more
complex to sequence. Nevertheless, the prototype implementation presented in

59

Chapter 5 – Dynamic Power Management

this chapter can generate sequences for a platform with 7 sockets in the same
time the implementation from Chapter 4 can generate a power-off sequence for
Enzian, a two socket system. Looking at power-on sequences this increases to
10 sockets. Additionally, the experiment here ran on much less powerful hard-
ware than the experiments in Chapter 4. I speculate that a significant amount
of the performance boost is due to the choice of programming language (Rust
vs. Python). Another important contribution is the insight that for practical se-
quences we do not have to perform piece-wise sequence generation as described
in Section 4.4.3. This avoids backtracking and multiple invocations of the state
computation algorithm.

5.4 Conclusion

We have seen that we can push power sequence generation to sub-second run-
times for moderately sized platforms. Running sequence generation online
however, also comes at the cost of significantly increased complexity in the
power manager. Even though we did not prove our sequence generator to be
correct, we are confident that any sequences generated adhere to the specifica-
tions. There are however cases where sequence generation can fail, e.g., if there
is no valid platform state to satisfy some combination of consumer constraints.
Furthermore, integer linear programming is an NP-complete problem. Solvers
use heuristics to find solutions for many problem instances fast. However, it is
possible to run into a case where the solver takes a much longer time to find a
solution. While this did not happen in the evaluation for this chapter, we have
seen such effects in Chapter 4 (see the outliers in Figure 4.7). In an offline
scenario, these issues are not severe, as long as the generation is sound, meaning
no incorrect sequences are generated. However, in an online scenario they can
lead to unpredictably high reaction times to incidents. I therefore advocate for
an alternative solution to build a model-based power manager.

5.4.1 An alternative to online sequence generation

To avoid having to generate sequences online, sequences could be pre-genera-
ted offline. However, generating and storing sequences to be able to transition

60

5.4 Conclusion

between any two platform states is prohibitively expensive for realistic server
platforms. This is especially true as we do not just need sequences between valid
states but also from degraded states back to valid platform states. I therefore
propose the introduction of checkpoint states. These are user defined states
where pausing power sequencing makes sense. For Enzian these states are, e.g.,
the following

1. Everything off

2. Regulators that are shared between the CPU and FPGA on

3. CPU on

4. FPGA on

The last two states are only partial platform states. However, because the CPU
and FPGA do not share any power topology beyond what is already turned on in
state 2, they can be turned on independently once state 2 has been reached. The
parts of the platform that are not shared between the two sockets can therefore
be treated like sub-platforms, with their own states.

To turn Enzian on, the platform now first transitions to state 2. Once the shared
power topology is on, the sockets can also transition into their powered states.
These 3 power-on sequences and the 3 corresponding power-down sequences
can be generated offline. In fact, this is how the generated sequence in the
current Enzian power manager is partitioned. If a fault occurs in, e.g., the
CPU specific part, we can now just run the power-down sequence for the CPU
socket, to transition back into a state where the degraded part of the platform is
powered down. If a fault occurs in the shared part, we would first need to run
the power-down sequences for both sockets before powering down the shared
regulators. By picking more checkpoint states we can introduce finer-grained
fault handling. Crucially however, with this approach we do not need to exactly
know, in what state the platform is after the fault occurred. Instead, we just reset
the fault part by powering it down. Furthermore, this approach keeps the number
of required sequences low, making it possible to generate them offline. I believe
that this solution strikes a good balance between flexibility at runtime and
keeping unpredictable behavior out of the runtime power management stack.

61

Chapter 5 – Dynamic Power Management

Implementing and analyzing the behavior of this alternative solution remain
however future work.

With the approach presented in this and the last chapter we can generate
correct power sequences. In this chapter I also discussed options for building a
complete power manager using the power topology model. To make sure that the
sequencing instructions are correctly communicated to the hardware however,
we also need reliable drivers for the regulators. In Chapter 6 I will present a
framework for generating provably correct drivers for this purpose.

62

6
A Trustworthy I2C Stack

We have seen in Chapter 4 how crucial correct power management is. How-
ever, the correctness of the power sequence does not matter much without a
driver stack that correctly confers sequencing instructions to the power regula-
tors. These regulators are predominantly controlled over an inter-chip protocol
called I2C. In this chapter, I present Efeu, a system for generating drivers for
complete I2C subsystems from formal specifications. The resulting software
stacks are not just suitable for server BMCs, but also for embedded controllers
in mobile phone SoCs, or resource-constrained internet of things (IoT) devices.
Moreover, the I2C drivers are high-performance and verified to behave correctly
using a model checker, even when the system includes devices which do not

correctly follow the I2C standard. Finally, the generated drivers can be in C, or
Verilog for FPGAs, or a hybrid of the two, enabling efficient determination of
the optimal hardware/software split for a given platform.

The I2C protocol is at the heart of almost all modern computer systems and
critical to their correct behavior. Bugs in I2C can result in inefficiencies in energy
usage, hardware lockups, and in some cases permanent hardware damage. A
correct I2C network within a phone or server is essential.

At the same time, I2C has features that make creating high-assurance driver
software particularly challenging. It is a bus-based protocol but unlike, say,
PCIe or USB it does not feature hardware facilities for isolation. This means
that a bug in the driver for a single device can disable the entire subsystem
at runtime. Unfortunately, an I2C subsystem for a typical machine includes
dozens of devices from many vendors, which (like PCIe) often exhibit quirks:
deviations from the standard which can confuse other devices or controllers.

63

Chapter 6 – A Trustworthy I2C Stack

For this reason, hardware I2C controllers may interoperate with only a limited
number of empirically compatible devices, and are thus frequently replaced with
“bit-banging” drivers which directly manipulate bus signals from handwritten
software. This impairs protocol performance, increases CPU load, and reduces
energy efficiency.

Despite this, the design and implementation of a trustworthy I2C software
stack has received relatively little attention from the research community. Efeu
addresses this challenge.

Efeu provides a language for specifying I2C devices, which includes the
ability to express known deviations from the protocol (quirks) by the devices.
A complete hardware platform’s I2C network can be expressed by composing
such specifications within the language.

The Efeu compiler can then generate a driver for the I2C host controller
together with drivers for the all the attached devices. This generated driver suite
can be in C, or alternatively in Verilog for synthesis onto an ASIC or FPGA.

Crucially, the Efeu compiler can place boundaries between generated software
and hardware functionality between any two layers in the I2C protocol stack. In
its simplest form, this enables the optimal split between hardware and software
implementation to be empirically determined, without writing any additional
code. It can also be used for debugging, for example by replacing an optimized
hardware layer with a more instrumented software layer.

The Efeu compiler also generates a specification of the complete I2C subsys-
tem (with quirks) in Promela [176], allowing correctness to be model-checked
using SPIN [81].

This is our second attempt at engineering verified I2C stacks, following a
somewhat simpler previous approach [86]. Efeu uses the same Promela specifi-
cations that the lower 3 layers (Symbol, Byte, Transaction) of the I2C stack
are verified against, but is otherwise completely new. In contrast to our previous
approach, Efeu is designed to enable the verification of realistic I2C topologies
with multiple attached devices, and targets the generation of both realistic soft-
ware and hardware components for implementing efficient, usable I2C stacks.
We provide a detailed evaluation of the verification and driver performance in
Section 6.3 and Section 6.4 respectively.

In the next section, I elaborate on why I2C matters, what makes it different
from driver assurance for interconnects like PCIe and USB, and the canonical

64

6.1 Background and problem statement

structure of an I2C stack. Following this, in Section 6.2, I describe the Efeu
language, compiler, and verifier, and how it addresses the challenges I have laid
out. In Section 6.3 I explain how the I2C stack is model checked, and show that it
can be done in practical time, and in Section 6.4 I show that Efeu allows a range
of different trade-offs in hardware/software implementations to be generated
from the specification of a real hardware platform, and also that the resulting
drivers are comparable with hand-tuned software and hardware in terms of
throughput, CPU cycles, and hardware footprint. I survey the broader landscape
of high-assurance device drivers in Section 6.5, and conclude in Section 6.6.

6.1 Background and problem statement

In this chapter, I address how to create high-performance, correct driver stacks for
bus-based devices, in particular those using I2C. By high-performance, I mean
competitive with state-of-the-art handwritten drivers in terms of throughput,
latency, and CPU usage. By correct, I mean that the driver is proven to function
as specified and not interfere with other devices sharing the bus.

Driver defects have long been identified as a major cause of system failures
and vulnerabilities [31, 69, 148], resulting in much work on improving driver
assurance via synthesis of drivers from specifications, post-hoc verification of
manually written drivers, and formally-derived hardware/software co-design. I
survey this work in Section 6.5, but focus here on what makes the high-assurance
I2C case different.

6.1.1 The importance of I2C and related protocols

Despite receiving much less attention in the literature than devices using, e.g.,
PCIe or USB, I2C and the related protocols SMBus [160] and PMBus [182,
183] are fundamental to the operation of almost all computers today, from small
IoT devices through mobile phone SoCs and platforms to large-scale servers and
rack-scale systems [201].

Whether controlled by the conventional OS kernel, or by “hidden” parts of the
de facto OS [65] like monitor code or BMC firmware, I2C is the base protocol
used to control almost all the components of a machine: configuring voltage and

65

Chapter 6 – A Trustworthy I2C Stack

EepDriver

Transaction
Issue read transaction,
Issue write transaction

Byte
Start, Stop, Read byte, Write byte,
ACK, NACK, Idle

START, STOP, BIT0, BIT1,
Stretch, IdleSymbol

Read EEPROM, Write EEPROM

Controller ResponderOperations

Electrical

Figure 6.1: The I2C stack with an EEPROM driver as an example application.

clock frequency, monitoring temperature and power, etc. I2C bugs lead to board
lockups, pathological power inefficiencies, or at worst hardware damage [23, 5,
30].

6.1.2 What makes I2C different?

I2C [88] is a serial bus protocol using two wires, the6 serial clock line (SCL) and
the serial data line (SDA). An I2C device is either a controller or a responder1

(Figure 6.1). Controllers initiate and control data transfers between themselves
and responders, identified by 7-bit addresses. An additional bit distinguishes
read transfers (a responder transmits data to the controller) and write transfers
(the controller transmits data). SDA is driven by the transmitting device while
SCL is normally only driven by controllers, but responders can “stretch” the
SCL clock if they cannot keep up.

What makes I2C specifically challenging is the need for interoperability. I2C
connects many components in an SoC or motherboard, and these are designed

1The standard refers to them as “master” and “slave”

66

6.1 Background and problem statement

and supplied by many different vendors. A correctly functioning I2C subsystem
depends not only on the driver for each individual device being correct, but also
on all the devices and drivers interoperating correctly.

Of course, interoperability is not a challenge restricted to I2C – USB and PCIe
devices must also work together, for example. However, both USB and PCIe
controllers by design provide isolation in hardware between devices, such that
drivers do not need to be aware of the whole protocol stack. Even so, deviations
from standards are common: the Linux kernel contains over 6000 lines of code
for handling so-called quirks [164, 119] in PCI(e) devices alone.

Interoperability is different for I2C devices. The bus-based nature of the
protocol means that a misbehaving device or controller can prevent all other I2C
devices on the bus from working. A single driver bug can render the entire I2C
bus unusable. Unfortunately, like PCIe, numerous I2C devices have quirks [6,
51]. For example, the KS0127 video decoder [103] expects its “stop streaming
data” command to appear in a non-standard position [118] and blocks the bus
indefinitely if the controller is unaware of this.

This means that a “one-driver-one-device” approach to high-assurance drivers
is insufficient. It also means that any formal approach must be able to handle
device quirks.

Moreover, in practice I2C controllers are often implemented in software. A
hardware implementation is usually provided, but often unused due to a lack of
confidence in interoperability. The Raspberry Pi I2C controller, for example,
does not correctly handle clock stretching. Controller and responders can thus
desynchronize, leading to lockups and data corruption [130]. This issue is not

a driver bug in the traditional sense: the I2C controller driver can correctly
program the controller and, as long as no responder uses clock stretching, the
system works correctly.

Consequently, many I2C controllers consist of low-level “bit banging” soft-
ware directly driving the SCL and SDA signals, even if a hardware controller is
available. This allows post-hoc workarounds for quirks, but has a cost. While
I2C bandwidth requirements are relatively modest this still results in slowdown
(see Section 6.4.2) and the heavy use of CPU cycles (and associated energy)
becomes an issue for low-end embedded devices. Recently, some vendors have
proposed using reconfigurable logic to help with I2C functionality [175, 63].

The bug in the Raspberry Pi also shows that relying on hardware manufac-

67

Chapter 6 – A Trustworthy I2C Stack

turers to fix bugs once discovered is not a solution: the bug was originally
discovered in the first Raspberry Pi model in 2013. Newer models released in
2020 are however still affected by it [94].

6.1.3 The I2C protocol stack and ecosystem

I now describe the I2C protocol bottom up (paraphrasing the standard [88]),
alongside our model of the protocol (Figure 6.1). I show a complete, end-to-end
example in Figure 6.2. Both controllers and responders have the same layers
described below, but differ in their implementations.

At the Electrical layer, both SCL and SDA have external pull-up resistors,
and devices may only drive the lines low. Multiple clock speeds are defined,
but Efeu targets the commonly used Fast Mode (400 kbit/s, or 400 kHz SCL).
In the Efeu model, the Electrical layer represents the levels with 0 and 1 and
models the pull-down behavior with bit operations. We do not model the precise
bus timing, but assume a bus adapter that translates bits into half cycles on the
bus, allowing the stack to work with discrete time. Currently, this adapter is
written by hand, but could be synthesized using a hardware/software co-design
approach like Chinook [34].

The Symbol layer converts between I2C symbols (START, STOP, BIT0, and
BIT1) and the SCL and SDA electrical levels using the encoding in Figure 6.2.
Two further operations, IDLE and STRETCH, are defined: IDLE is a no-op to
the bus, and STRETCH performs clock stretching, pulling SCL low for one cycle.
This is the only operation with which a responder can drive SCL. Otherwise,
responders passively respond to clock cycles. In our model, controllers handle
clock stretching at the Symbol layer, waiting for its completion before returning
to the upper layers.

I2C is byte-oriented. The Byte layer encodes and decodes bytes to and
from bits, as well as acknowledging each byte or not: ACK is encoded to the
BIT0 symbol and NACK to BIT1. Byte also detects arbitration loss if multiple
controllers collide on the bus, reporting this upwards.

Above this at the Transaction layer, a transaction starts with a START sym-
bol, the 7-bit target device address, and a read/write bit. Payload bytes follow,
supplied by either the controller or the responder depending on the transaction
type and are ACKed or NACKed by the receiving device. A transaction is ter-

68

6.1
B

ackground
and

problem
statem

ent

EepDriver
Write EEPROM offset (2 bytes) Read 1 byte at the offset STOP

Transaction
START I2C address W ACK Offset high ACK Offset low ACK START I2C address R ACK Byte NACK STOP

SDA

SCL

Figure 6.2: Timing diagram of a 1-byte read at a given EEPROM offset. SDA is driven either by the
controller (blue) or the responder (yellow) in a cycle. SCL is always driven by the controller.
Dashed levels indicate more than one cycle.

69

Chapter 6 – A Trustworthy I2C Stack

minated by a STOP symbol, or another START – known as a repeated START
– in which case the controller keeps the bus busy without releasing it.

The top layer is specific to a responding device class. I use the EepDriver
layer as a running example here, modeling a byte-addressable EEPROM, the
Microchip 24AA512 [1]. The controller EepDriver issues transactions to
perform EEPROM operations. To write data to the EEPROM, a write transaction
is issued with a two-byte data offset followed by the payload bytes to write starting
from the offset. To read data from the EEPROM, EepDriver first issues a write
transaction carrying the data offset, followed immediately by a read request to
stream out data starting from the offset. Figure 6.2 shows the timing diagram of
reading 1 byte from an offset.

6.2 Efeu design and implementation

The workflow of Efeu is shown in Figure 6.3: a developer writes the implemen-
tation specification (devices and topology) of the platform, and Efeu translates
it into a Promela model for model checking and iterative refinement. When they
are satisfied with the specification, Efeu generates implementations in C and
Verilog. While currently focused on I2C, Efeu is generic enough to be extended
to other bus-based protocols.

6.2.1 Specifying the driver stack

The structure of Efeu specifications follows the one we developed in previous
work [86]: developers write specifications top-down, and then defining each of
them as an indefinitely-running finite state machine (FSM). The layered structure
makes components reusable across specifications (see Section 6.3).

Some design decisions in our previous approach were however unsuitable for
generating real-world drivers. A major one was to fix the direction of com-
munication between layers at specification time: the layer that calls another
layer initiates communication and the other layer responds by yielding. As I
detail in Section 6.2.3, this lacks the flexibility needed in real world settings.
Communication primitives in Efeu specifications are therefore symmetric, and

70

6.2 Efeu design and implementation

Verifier ESMESI

Model checked and
revised by the user

Promela
model

C MMIO
driver

AXI Lite
driver

Verilogmain()
Other
HDL
code

C backend
MMIO-AXI Lite backend

HDL backend

Promela backend

Implementation
specification

Software implementation Hardware implementation

+

Generated

Written

Figure 6.3: Efeu workflow.

71

Chapter 6 – A Trustworthy I2C Stack

1 layer CTransaction;

2 layer CEepDriver;

3
4 enum CTAction {

5 CT_ACT_WRITE ,

6 CT_ACT_READ ,

7 CT_ACT_STOP ,

8 CT_ACT_IDLE ,

9 };

10
11 enum CTResult {

12 CT_RES_OK ,

13 CT_RES_FAIL ,

14 CT_RES_NACK ,

15 };

16 interface <CTransaction , CEepDriver > {

17 <= {

18 CTAction action;

19 u8 addr;

20 u8 length;

21 u8 data[16];

22 },

23 => {

24 CTResult res;

25 u8 length;

26 u8 data[16];

27 }

28 };

Figure 6.4: ESI for controller Transaction and EepDriver layers and their
interface. “<=” and “=>” define the channels from CEepDriver to
CTransaction and vice versa.

the compiler chooses a suitable implementation for the desired scenario. To en-
able this, the layer declarations also need to include interface declarations. We
developed a new lightweight DSL for this called ESI (Efeu System Information).

Figure 6.4 shows an ESI example controller Transaction and EepDriver
layers and the interface connecting them. Interfaces consist of a channel in each
direction. In a channel, each data field has a type and a name. Supported types
include bit/bool, unsigned byte (u8), 16-bit and 32-bit integers (i16 and i32),
enumerations, and 1-dimensional arrays.

Layers are then specified as FSMs in another DSL. In our previous approach
we focused on verification and designed the specification language to be easy to
translate to Promela. As the new communication model in Efeu required us to
change the specification language for layers anyway, we decided to instead make
it resemble a subset of C. This improves its usability for writing specifications of
real systems by allowing existing tools like syntax highlighting, formatting and
static checking to be reused. The new DSL is called ESM (Efeu State Machine)
and differs from C as follows:

• The only built-in types are bit and bool (one-bit), byte (or unsigned
char), short and int.

72

6.2 Efeu design and implementation

• ESI Interface definitions become structs; no other struct definition is
allowed.

• ESI enumerations become C enums; other enums are allowed, but unlike
C, corresponding integer values may not be specified.

• Only the unary operators plus (+), negate (-), bitwise not (~), and boolean
not (!) are supported.

• The only control flow statements supported are if, while, and goto.

• Each layer is an indefinitely-running function without return. No other
function definitions are allowed.

• Promela [176] reserved words like len and timeout are also reserved in
ESM.

• ESM supports no pointers, global variables, functions, or variable initial-
ization at declaration time.

Within each layer function, two language primitives, talk and read, are used
to communicate with adjacent layers. Their function stubs are generated by the
Efeu compiler. Given two adjacent layers A and B, A talk B is a blocking
round-trip communication over the interface between A and B resembling two
coroutine switches [101, 129]: values are sent from A to B, and the operation
continues in A when B issues a corresponding B talk A with return values.
A read B only differs in that no initial values are passed to B but A waiting for
synchronization.

6.2.2 Efeu compiler overview

The Efeu compiler ESMC compiles ESI and ESM code to various targets:
Promela code for model checking, C code for software drivers, and/or Verilog
code for hardware drivers. Previous work pioneers translating C-like languages
to Promela [82, 92] and Verilog [153, 125, 87, 112]. Efeu adopts the idea but
uses a single unified specification language.

73

Chapter 6 – A Trustworthy I2C Stack

ESMC is built on Clang/LLVM [107, 123, 35] and leverages existing compo-
nents. ESMC adds 7823 lines of C++ code (excluding blank lines and comments)
to Clang/LLVM, together with 136 system tests to cover this code. ESI files use
a custom lexer and parser to parse them an internal representation. ESM code is
processed by the Clang frontend, which performs type checking and constructs
an abstract syntax tree (AST). Any errors, warnings and/or comments are re-
ported to the user in a readable format through the Clang diagnosis engine [36].
By reusing Clang, ESMC inherits formatted diagnostic messages and C prepro-
cessor support, enabling conditional compilation, compile-time polymorphism,
and modular design. The backends operate on the Clang AST.

6.2.3 C Backend

Efeu generates C that can then be compiled into executables or libraries. Recall
that in ESM, layers are indefinitely-running FSMs written as functions without
return. A straightforward implementation option would transform these func-
tions into threads and the talk/read operations into inter-thread communica-
tion, but this introduces scheduling overhead and dependence on the OS-specific
thread implementation.

Instead, we implement layers as stack-based coroutines purely in C with min-
imal runtime support required, ensuring portability across systems and highly
efficient switching between layers.

In principle, to implement two connected layers as stack-based coroutines,
either one can be the callee. However, in real applications, as generated drivers
are integrated with the rest of the OS, the choice of which layers becoming
callees affects the usability of the generated code. We therefore introduce the
concept of a call graph in the C backend and allow the developer to specify an
entry point to this graph at compile time, which the compiler provides a function
interface to.

Figure 6.5 shows three examples. In the leftmost one, when the generated
code is intended to be used as a driver library, it is naturally invoked with the
entry point as a top-level function. Efeu performs a depth-first search (DFS) on
an undirected graph where nodes are the layers and edges are the connections.
The talk/read operations on the forward edges become function calls, and the
reversed ones become continuations. Code generated in this way can be directly

74

6.2 Efeu design and implementation

EepDriver

Transaction

Byte

Symbol

Bit-banging

Top-down:
driver library

Controller

Continuation

EepDriver

Transaction

Byte

Symbol

Event loop

Lib entry Mutex

EepDriver

Transaction

Byte

Symbol

scanf

EepDriver

Transaction

Byte

Symbol

printf

Electrical

Responder Controller Responder

Bottom-up:
server process

Bottom-up:
command-line simulator

Calling point Function call

Generated Boilerplate written by user

Figure 6.5: Examples of call graphs.

compiled into a usable library. The second example shows the ideal graph when
the generated code is used as a part of a server process in the OS: An event
loop (“callee” of the OS scheduler) reads values from the bus driver, invokes
the stack from the bottom, reads the next electrical levels to write to the bus,
and sends them to the physical bus driver. The third example is a command-line
simulator of one controller and one responder. The Electrical layer is called
by an infinite loop. The top layer of the controller reads inputs from the user,
which go through the whole stack, and the results are printed at the top layer of
the responder.

Given a call graph, talk and read operations become function calls and
continuation calls. Figure 6.6 shows a talk operation. To pass values between

75

Chapter 6 – A Trustworthy I2C Stack

ESI

layer This;

layer Other;

interface <This, Other> {

=> { i32 x;

i32 y; },

<= { i32 z;

i32 w; }

};

ESM

v = ThisTalkOther(x, y);

Transformed Direct Call

Other(x, y, &v.z, &v.w);

Transformed Continuation

*_ThisToOther_x = x;

*_ThisToOther_y = y;

_continuation_pos = <N>;

return;

continuation <N>:

v.z = _OtherToThis_z;

v.w = _OtherToThis_w;

Figure 6.6: Transforming a talk into a function call or a continuation. <N> is a
placeholder for a newly allocated continuation index.

layers, function (layer) signatures are also transformed. When a layer is a callee
in one connected pair, it passes input values from the other layer by value, and
output values by reference (as pointers). The transformations use the Clang
Rewriter [37]. Other parts of code remain unchanged as they are already valid
C.

6.2.4 Verilog backend

Efeu also generates Verilog for programmable logic like FPGAs. The backend
reuses more of the Clang/LLVM pipeline. The Clang AST is further lowered to
LLVM IR [41], and thence transformed to Verilog. LLVM IR uses static single-
assignment (SSA) form, which maps well to combinatorial logic in Verilog.
Each function (layer) becomes a Verilog module, and basic blocks are converted
to states. IR instructions are translated into blocking assignments in Verilog
to preserve data dependencies between instructions. They will be analyzed by
the electronic design automation (EDA) tool used to implement the circuit to
extract parallelism. Arithmetic instructions are translated to the corresponding
ones in Verilog. Branch instructions (conditional, unconditional, switch, and
q nodes [41]) become state transfers. Instructions that involve pointers (such

76

6.2 Efeu design and implementation

as stack allocation, load and store) are converted to operations on registers. As
ESM disallows pointers and global variables, all pointers appearing in IR can
be located with static analysis. The detailed translation rules can be found in a
separate report [121].
talk and read require special handling, since they involve communications

with other layers and require more than one cycle. Efeu uses ready/valid hand-
shaking, a flexible and lightweight design widely adopted in designs like the
AMBA AXI4 protocol [14]. On a unidirectional channel, the sender outputs
data signals and a valid signal. The receiver outputs ready when it can accept
more data.

A talk results in the following four states (read results in states 2 to 4),
encoded as additional basic blocks.

1. Output data. Assert valid. Wait until peer asserts ready.

2. De-assert valid. Assert ready. Wait until peer asserts valid.

3. Save data from peer. Assert ready.

4. De-assert ready.

6.2.5 Generating hybrid hardware/software drivers

Efeu can also generate hybrid drivers, with multiple hardware/software layer
boundaries defined at compile time. The hardware/software interface is based
on AXI Lite [14]: between layers that straddle the boundary, data fields and
valid and ready signals from the handshaking protocol are memory-mapped at
different offsets. Figure 6.7 shows the case with EepDriver in hardware and
Transaction in software, corresponding to the ESI interface in Figure 6.4.

The hardware handshaking protocol assumes sender and receiver to be in the
same clock domain [14]: after a cycle where both valid and ready are raised,
the sender needs to lower the valid signal immediately on the next clock cycle
if there is no more data to send. Otherwise, the receiver treats data on the bus
as the next valid packet. Similarly, the receiver needs to lower the ready signal
unless it can immediately accept more data on the next cycle.

77

Chapter 6 – A Trustworthy I2C Stack

This is not the case when one side is in software. If the valid port uses a
simple register, the software side might not be able to reset it in time, resulting
in the same data being transmitted multiple times. Similarly, if the software
does not reset its ready port in time, the hardware may send multiple packets
that overwrite one another, causing data loss.

We solve this by performing automatic resets on the hardware side in the
AXI Lite driver. Software writing a non-zero value to its output valid port
means the data in the data registers is valid once. If the data is consumed, the
valid signal is lowered in the hardware on the next cycle. Similarly, writing
non-zero to the output ready port means the software side is ready to accept one

packet. Once a packet is in place, the ready signal is lowered by the hardware
on the next cycle.

On the software side, as with any device, waiting for the valid signal can be
done either by polling or using interrupts. We implement both: as I show later
in Section 6.4, they have different impacts on performance and CPU usage.

The software and hardware stub code are generated based on a minimal
OS-specific library. We currently have library implementations for Linux and
seL4 [99] in less than 100 lines of code each. For the Linux implementation,
a small kernel module (less than 150 lines of code including blank lines and
comments) creates userspace I/O (UIO) [102] device files for Efeu hardware
based on device tree entries. The generated drivers then run in userspace. The
library only mmaps the device file and provides functions for directing reads and
writes to the virtual base address obtained from mmap, plus a function to wait for
an interrupt which uses a blocking read from the UIO device file. On seL4 we
rely on the Microkit SDK [80] to map the device registers into the virtual address
space of the driver’s protection domain. The read and write functions are then
implemented the same as in Linux. Waiting for an interrupt is implemented
using the blocking seL4_Recv syscall.

Efeu can generate drivers with more than one hardware/software boundary,
as in Figure 6.7. These configurations are not optimal for performance, but
can be useful for debugging (e.g., temporarily replacing a hardware layer with
software).

78

6.2 Efeu design and implementation

0x00

...

Console

CEepDriver

CTransaction

CByte CSymbol
I2C
bus

Program 1

Software

status & reset
CEepDriver to
CTransaction

CTransaction

to CEepDriver

action
addr

valid
ready

MMIO
offset 0x04

0x28

0x08
0x0C
0x20

0x04

0x24

IP 1 IP 2Hardware

Program 2

Figure 6.7: Multiple hardware/software boundaries. MMIO-AXI Lite interface
between CEepDriver and CTransaction (corresponding to the
ESI definition in Figure 6.4).

79

Chapter 6 – A Trustworthy I2C Stack

6.2.6 Promela backend

The Promela backend transforms the AST into input for the SPIN model checker,
preserving syntactic information like variable names and control flow from the
AST and allowing the developer to make easy correspondence between the ESM
code and the generated Promela. Most ESM constructs have straightforward
analogs in Promela, including variable declarations, operators, and control flows.
The notable translation rules are listed as follows.

• bit and byte are not built-in types in C. Stub code generated by ESMC
typedefs them as unsigned char to make the ESM code syntactically
correct, but they are translated to exactly bit and byte in Promela.

• Enumerations translate to mtype [176].

• ESM channels translate to synchronous channels in Promela [176].

• Layer functions translate to Promela processes [176] with channels passed
as parameters. This allows users to write parameterized verifiers (see
Section 6.3.4).

• In Promela, and if statement encodes non-deterministic choices [176].
If no option is executable, the expression is blocking. However, in ESM
when the condition does not hold, the if block is skipped. We encode
such behavior by generating an else -> skip block if there is no else
branch in ESM.

The generated Promela models the system, but must be combined with verifier
code for input to the model checker. Note that Efeu does not provide fully
formally-verified end-to-end properties: we trust ESMC to generate correct
code (with extensive tests) and the downstream toolchains to correctly compile
it. Removing this gap in the proof could be attempted using a range of techniques
for compilers [111, 170] and EDA tools [126, 105, 112] but is beyond the scope
of this dissertation.

80

6.3 Verification

Electrical

Byte

specification

Symbol

specification

Interchangeable

Controller
Byte

Controller
Symbol

Responder
Byte

Responder
Symbol

Glue

Input space definitions Generated

Written

Figure 6.8: Architecture of the Byte verifier.

6.3 Verification

In the following, I describe how Efeu is used to verify a generated I2C stack
following the approach from our previous work [86], starting with the simplest
case of one controller and one responder. I then discuss how we extend the tech-
nique to support multiple devices using parameterized verifiers in Section 6.3.4.
I also explain how to model non-standard devices and quirks in Section 6.3.5.

6.3.1 Approach

For each layer except Electrical, we verify that the stack conforms to the
behavior specification and there is no live- or deadlock in the system. Functional
correctness is checked by assertions and the absence of live- and deadlocks is
verified automatically by the model checker. Figure 6.8 shows the architecture
of the Byte verifier as an example. The unit-under-test is the Byte layer, which
is connected to the layer below. An input space specification defines the valid
input to the system. Inputs are fed to both the stack and the behavior specification
and the outputs are compared.

81

Chapter 6 – A Trustworthy I2C Stack

The state search space of the whole stack is non-trivial. To mitigate the
state explosion issue, we apply the technique we proposed previously [86],
which substitutes lower layers with the corresponding behavior specification.
This significantly reduces the model checking runtime (see Section 6.3.3) and
consequently allows larger input spaces and/or larger systems (Section 6.3.4).
Each different class of layer has a different type of behavior specification, as
follows:

TheSymbol behavior specification specifies how symbols are combined on the
bus. For example, a START symbol and an IDLE symbol (passively listening)
are combined into a START operation received by both devices. BIT0 plus
BIT1 results in BIT0 due to the pull-down characteristic of the I2C bus. The
corresponding input space specification specifies valid control sequences from
the Byte layers above.

TheByte behavior specification specifies how the controller and the responder
should interact at the byte level. For example, when the controller writes a byte,
the responder should be listening and the byte should be seen by both devices
ultimately.

The Transaction behavior specification raises the abstraction level further
up. The controller issues read and/or write transactions and the responder
observes them. The input space specifies valid control sequences from above
as a mixture of read transactions, write transactions, and/or stop operations. It
is at this level that model checking scalability becomes an issue. Exploring
the whole search space, including the variable payload length and content is
infeasible. We therefore currently limit the input space specification for the
Transaction verifier to a variable payload length of up to 4 bytes and a fixed
payload content.

The example EepDriver behavior specification raises the abstraction level
to EEPROM read and write operations. As with the Transaction verifier we
limit the input space specification to a fixed EEPROM offset for reads and writes
and a payload of between 1 and 4 bytes of fixed content.

In our previous work, we chose SPIN as the model checker for its ease of use
and maturity. We also used it for this work to reuse the behavior specifications.
The verification scalability experiment in Section 6.3.4 shows some limitations
of the tool: increasing the number of devices and/or the payload length leads to
state space explosion. We expect that more recent model checkers, especially

82

6.3 Verification

symbolic SAT-based ones [196] would be able to explore the search space more
efficiently. Exploring this and alternative verification strategies, like pairwise
verification of devices, are however beyond the scope of this dissertation.

6.3.2 Verification Code Size

While Efeu generates the complete stack in Promela from ESI/ESM, the other
components of the verifiers (input space definitions, behavior specifications, and
glue) require manual effort. The cost of verification will thus vary from platform
to platform. As an indication, I report here the code size of both the generated
and the handwritten files.

The ESM and C code is formatted with ClangFormat [38] and counted with
cloc [52]. For Promela code, to my best knowledge, there is no canonical
Promela formatter. Therefore, we build an in-house formatter and consistently
apply it on both generated and handwritten Promela code. Comments and empty
lines are excluded in all code.

Table 6.1 shows the results; those for generated code are underlined. At the
Symbol and Byte levels, the controller and responder share most of the ESM
code using preprocessor macros to include the same files, so I report combined
lines. Shared generated Promela code defines common data structures and
channels, which cannot be attributed to specific layers. Shared glue code is
written once and included in all verifiers.

We see that the generated Promela is roughly the same size as the ESM speci-
fication, which is expected due to the close semantics of the languages. The ratio
of additional handwritten Promela code to generated code is between 0.96 and
1.49 (excluding shared code). These numbers are only a rough approximation
of the cost of verification, but do show how Efeu reduces the verification cost
and avoids human errors by automating the translation from the specification to
Promela.

6.3.3 Verification Runtime

To demonstrate the practicality and effectiveness of abstraction levels, we mea-
sure the runtime of SPIN executing these verifiers on an AMD Ryzen 9 7950X

83

Chapter 6 – A Trustworthy I2C Stack

Layer

Symbol Byte Transaction EepDriver Shared

ESM

Controller
139 114

106 62
Responder 177 85

Promela

Generated controller 96 143 126 81
111

Generated responder 95 143 116 119
Behavior spec 65 85 114 55
Input space and glue 119 203 184 243 121

C

Generated controller 159 174 125 62

Verilog

Generated controller 613 465 571 374

Table 6.1: Source code lines of layers

16-Core machine with 64GB RAM and 128GB swap memory. The SPIN ver-
sion is 6.5.2. Each verifier is executed 5 times. SPIN can check for either
deadlocks or assertion failures (invalid end states) or livelocks (non-progress
cycles) in one execution, but not both. Therefore, each verifier is compiled and
executed in each configuration, and the runtime is summed up.

Table 6.2 show average runtime, and also the effect of abstracting lower layers
with the corresponding behavior specifications. All verifiers pass. We observe
no significant deviation across runs. The maximum coefficient of variation of
all measurements is under 2.7%, and so I omit it for brevity.

Verifying Symbol is fast. Moving up the stack, the runtime increases dra-
matically, but limiting the input space allows the I2C stacks to be verified in
reasonable time.

84

6.3 Verification

Layer Abstraction Level

None Symbol Byte Transaction

Symbol 0.24
Byte 11.33 4.01
Transaction 104.53 34.79 6.11
EepDriver 584.78 196.31 38.92 9.15

Table 6.2: Average verification runtime in seconds

6.3.4 Scalability

So far I have shown verification for a single controller and responder. I now show
the scalability of our approach modeling and verifying parameterized systems
with multiple EEPROMs. The verifier uses channel arrays in Promela [176].
Multiple responders are instantiated and connected to an Electrical layer.

We vary the number of EEPROMs and the maximum length of reads and
writes. The EEPROM offset and payload content are fixed. I also show a
“variable payload” with one EEPROM where the first payload byte is chosen
from two options non-deterministically. As in Section 6.3.3, we replace lower
levels with behavior specifications to reduce the verification runtime, which is
shown in Figure 6.9. Again, I omit the insignificant standard deviations.

This shows that systems with multiple responders can be verified in reasonable
time. However, with SPIN the state space still explodes as the input space is
enlarged or the number of responders increases. I discussed some strategies to
further scale the verification at the end of Section 6.3.1.

6.3.5 Non-Standard Devices

I now show how to model devices that violate the I2C standard, taking as
examples the KS0127 video decoder and the I2C controller on the Raspberry Pi.

The KS0127 video decoder (unlike the successor KS0127B [104]) has a
quirk [103, 118]: in an I2C read transaction, it attempts to sample a stop
condition at the place where the acknowledgment bit should be. Otherwise, the

85

Chapter 6 – A Trustworthy I2C Stack

1 2 3 4 5 6 7 8

Maximum read/write length (bytes)

0

500

1000

1500

2000

A
v
er

ag
e

v
er

ifi
ca

ti
o
n

ru
n
ti

m
e

(s
)

1 EEPROM

1 EEPROM (variable payload)

2 EEPROMs

3 EEPROMs

Figure 6.9: Verification runtime of multiple EEPROMs with different maximum
payload lengths.

86

6.4 Evaluation on real hardware

stop condition is not recognized. Linux introduced a flag (I2C_M_NO_RD_ACK)
to handle this behavior solely for this device [118].

In Efeu, we model this quirk by changing only the Byte layer for the KS0127
responder to skip reading the acknowledgment bit in a read transaction. This
involves 13 lines of additional ESM code. We also modify the maximum read
length in the input space specification to 1 as both the KS0127 datasheet [103]
and the Linux driver code [118] only specify reading one byte.

When we combine the modified KS0127 Byte and the standard controller
Byte, SPIN reports the system can enter an invalid end state, showing that the
standard controller is not interoperable with the responder.

Next, we modify the controller Byte layer to make it compatible with KS0127,
involving 10 lines of additional code. With this modified controller, the verifier
passes. Note that above these modified Byte layers, the Transaction layer
can be used unmodified and the stack fully verified, showing that quirks can be
handled within a single layer.

Similarly, using Efeu, we can efficiently model the hardware I2C controller
on the Raspberry Pi that does not handle clock stretching [130], by removing
the clock stretching handling code from the controller Symbol layer in our
specification, requiring 3 additional lines of code (essentially a preprocessor
macro). The standard Symbol verifier detects problems in the modified stack.
If we also remove clock stretching from the input space, essentially modeling a
responder that never stretches the clock, the verifier passes.

6.4 Evaluation on real hardware

We evaluate the hybrid hardware/software I2C controllers generated by Efeu on
real hardware, varying the split between hardware and software. In this section,
I report the results and show that it is feasible to efficiently explore the trade-
offs between achievable bus speed, CPU usage, and FPGA resource utilization.
We compare the generated drivers with two baselines: the Linux “bit-banging”
kernel driver and the Xilinx I2C IP [124].

The generated drivers run on a Zynq UltraScale+ MPSoC [210]. The MPSoC
features a quad-core ARM Cortex-A53 and a Xilinx 16 nm FPGA. A modified
OpenBMC [142] distribution (kernel version 5.15) runs on the ARM cores.

87

Chapter 6 – A Trustworthy I2C Stack

Efeu-generated C code is cross-compiled using GCC 13.2.0 with -O3 optimiza-
tion. Generated hardware parts are placed in an FPGA design, implemented
using Xilinx Vivado 2022.1 with the default settings, and loaded on the FPGA.
All components in the FPGA design are driven by a 100 MHz clock. Two GPIO
pins serve as SCL and SDA, routed to an IO connector and connected to an I2C
bus.

For I2C responders, we model Microchip 24AA512 EEPROMs [1] which
support I2C Fast Mode (400 kbit/s). However, to demonstrate that the generated
drivers work in practice, we use a real 24AA512 EEPROM as the responder,
connected to the I2C bus. EEPROMs are slow for write operations: page writes
on the 24AA512, page writes can take up to 5 ms [1]. During busy periods,
the device stops responding to subsequent I2C requests. We focus on the I2C
performance of the generated drivers rather than that of the EEPROM and so
only report read operation performance.

A Keysight InfiniiVision MSO-X 3024T oscilloscope [95] is used to inspect
signals on the I2C bus. The SCL and SDA lines are captured as analog signals.
The oscilloscope is capable of finding rising/falling edges and decoding I2C
packets.

To get the best performance from the baseline Linux I2C “bit-banging” driver,
the GPIO delay [116] is set to 1 (0 results in a longer default delay). Internally,
the driver polls the GPIO pins using a spinlock to wait between operations [117].

The Xilinx I2C baseline consists of two parts: hardware IP in the FPGA
design with the target frequency set to 400 kHz, and the Linux driver from
Xilinx supporting interrupts. The IP offers a similar abstraction level as our
Transaction, while offering additional functionality like FIFO queues.

I denote software/hardware splits by the topmost hardware layer. For example,
configuration Byte has Byte and below in hardware and the rest in software.

6.4.1 Source code size

To show how effective Efeu is in reducing the effort of writing I2C stack imple-
mentations, we measure the generated source code size. C code is formatted with
ClangFormat [38] while Verilog code generated by Efeu is already formatted.
Code size is measured using cloc [52].

88

6.4 Evaluation on real hardware

Interface ESI Generated

C VHDL

Electrical-Symbol 10 73 308
Symbol-Byte 16 68 295
Byte-Transaction 28 73 308
Transaction-EepDriver 24 84 391
EepDriver-World 23 82 401

Table 6.3: Source code lines for MMIO-AXI Lite interfaces

For layer implementations, sizes of the generated C and Verilog code are in
Table 6.1. The generated C code has roughly the same size as the corresponding
ESM specification. The generated Verilog files are a few times larger than the
ESM files. Table 6.3 shows the result for the MMIO-AXI Lite interface across
the hardware/software boundary. Vivado uses VHDL for AXI Lite interfaces,
so does Efeu. Mixing VHDL and Verilog is not a problem as Vivado (and many
other EDA tools) trivially supports it. The interface specification (ESI) is highly
compact, while the generated code contains significantly more lines of code.

By specifying the stack in ESI/ESM once, developers save the effort of imple-
menting the same thing in C and Verlog. While the generated code is expected
to be less compact than code written by human experts, I conclude that Efeu
helps reduce the effort required to materialize the verified stack.

6.4.2 Achievable Bus Speeds

The EEPROM supports the I2C Fast Mode (400 kHz SCL) [88]. However,
not all controllers can drive the bus at this speed. We measure the achievable
bus speeds of both the baselines and the generated drivers to show how the
software/hardware split point and the type of interface (polling versus interrupt-
driven) affect the I2C driver performance.

We measure the bus speed achievable by each controller by issuing 3 EEPROM
reads of 14 bytes and inspecting the waveforms captured by the oscilloscope.
The oscilloscope is triggered by the first falling edge of SDA, signaling the
start condition of an I2C transaction. It records long enough to cover the

89

Chapter 6 – A Trustworthy I2C Stack

whole operation. We use its built-in search function to find all rising edges of
SCL. Experiments consistently show 164 rising edges for each EEPROM read
operation. We calculate the effective SCL frequency as the inverse of the time
between two consecutive rising edges. I show the average frequency and the
standard deviation.

In the top half of Figure 6.10, the average frequencies across the whole opera-
tion and the 3 repetitions are shown. The error bars show the standard deviations.
The Xilinx I2C IP reaches bus speeds close to the target frequency with little
variation. The achievable bus speed is 386.57 kHz and the standard deviation
is 23.75 kHz. The Linux bit-banging driver achieves an average frequency of
162.81 kHz, less than half of the target frequency. The standard deviation is
12.85 kHz.

The polling-based Electrical driver achieves a slightly lower frequency
of 154.44 kHz with a standard deviation of 12.97 kHz. The interrupt-driven
Electrical driver does not function correctly due to excessive interrupts being
issued.

By moving the Symbol layer into hardware, the polling-based Symbol driver
achieves a higher bus frequency of 263.32 kHz with a standard deviation of
12.77 kHz. Due to the reduced traffic across the software/hardware boundary,
interrupts work for the Symbol driver. However, the interrupts yet introduce
non-negligible overhead—the interrupt-driven Symbol driver only achieves
108.76 kHz.

By moving the next layer Byte into the hardware, the polling-based Byte
driver achieves an average frequency closer to the target of 359.98 kHz. How-
ever, the standard deviation becomes more significant, reaching 89.82 kHz. The
interrupt-driven Byte driver has less overhead. It shows an average frequency
of 342.9 kHz, close to the polling-based driver, and similarly a higher standard
deviation of 123.58 kHz.

The Transaction drivers move one more layer into the hardware. At this
point, the generated drivers have a similar abstraction level as the Xilinx I2C IP.
The achievable frequencies of both the polling-based and the interrupt-driven
drivers are close to the target frequency, averaging 392.48 kHz and 392.24 kHz

respectively. The standard deviations also drop to 33.25 kHz and 36.36 kHz

respectively. Compared with the Xilinx IP, Transaction drivers have slightly
higher bus speeds and standard deviations.

90

6.4 Evaluation on real hardware

When all layers are in hardware, the EepDriver drivers achieve 396.02 kHz

(polling) and 396.01 kHz (interrupt-driven). The standard deviations further
drop to 10.37 kHz (polling) and 10.34 kHz (interrupt-driven).

To assist interpretation of the differences in achievable bus speeds, Figure 6.11
shows several waveforms of SCL. When the driver has a large portion in software,
such as the Linux bit-banging driver or the Electrical driver, SCL is driven
slowly and with unstable frequency. The software part takes longer time to
process and to communicate data across the software-hardware boundary. In
contrast, when most of the stack is in hardware, like the Xilinx I2C IP and the
EepDriver driver, SCL is driven towards the target frequency stably.

The experiment demonstrates how the splits between software and hardware
affect the driver performance. Higher and more stable performance can be
achieved by moving layers into hardware. This reduces traffic across the soft-
ware/hardware boundary, where MMIO operations take time. In addition, when
implemented in hardware, layer FSMs transit their states deterministically ad-
hering to the hardware clock.

When the whole stack is implemented in software, the Efeu-generated driver
achieves a performance close to the Linux bit-banging driver. However, neither
of them reaches the target frequency of 400 kHz. By implementing parts of the
stack in hardware (if the platform allows), Efeu-generated drivers can achieve
the target frequency, comparable with the Xilinx I2C IP, an optimized hardware
implementation.

6.4.3 CPU Usage

The splits of software and hardware affect not only the achievable bus speed
but also the CPU usage. If the platform on which the drivers run has limited
computing power, understanding the latter correlation helps decide the optimal
implementation. In this experiment, we measure the CPU usage of the Efeu-
generated drivers and the baselines.

Similar to the experiment discussed in Section 6.4.2, drivers issue EEPROM
operations of reading 14 bytes. However, in this experiment, those operations
are issued consecutively and indefinitely until manual termination. In this way,
we can read out the CPU usage in a stable running state. No other process
consumes significant computing power. Behavioral correctness is asserted by

91

Chapter 6 – A Trustworthy I2C Stack

0

100

200

300

400

500

T
ra

n
sm

is
si

o
n

sp
ee

d
(k

H
z)

Xilinx I2C Bit-banging Electrical Symbol Byte Transaction EepDriver
0

25

50

75

100

125

C
P

U
u
sa

g
e

(%
)

Baseline Generated

Interrupt-driven Polling

Figure 6.10: Achievable bandwidth (top) and CPU usage (below). 100% CPU
means one core (of four) is fully utilized. The shaded area are the
baselines and the Efeu configurations are labeled with the highest
layer implemented in hardware.

92

6.4 Evaluation on real hardware

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (us)

EepDriver
(interrupt)

Electrical
(polling)

Bit-banging

Xilinx I2C

Figure 6.11: Waveforms of the first few SCL cycles, captured by the oscilloscope.

placing software assertions and inspecting I2C transactions decoded by the
oscilloscope.

The result is shown in the lower half of Figure 6.10. As expected, all
polling-based drivers fully utilize one core. In contrast, using interrupts at
the software/hardware boundary reduces the CPU usage. The interrupt-driven
Electrical driver does not work as explained in Section 6.4.2. The Xilinx
I2C IP consumes 12%. The Symbol driver consumes 64%. The Byte driver
consumes 36%. Moving the split point further upwards, the CPU usage drops
significantly. The Transaction and EepDriver drivers takes 8% and 4%
respectively.

The experiment demonstrates how the software-hardware split point affects
CPU usage of the driver. Naturally, by moving parts of the stack into hardware,
the CPU usage decreases for the interrupt-driven drivers but not the polling-
based drivers. The interrupt-driven Transaction and EepDriver drivers gen-
erated by Efeu have the lowest CPU usage, lower than the Xilinx IP.

93

Chapter 6 – A Trustworthy I2C Stack

Xilinx I2C Electrical Symbol Byte Transaction EepDriver

Software-hardware split point

0

200

400

600

800

1000

1200

L
U

T
s

391

48

141

249

807

997

3612 86
40

15

65

120

47
17

65

112

490

124

16

65

111

450

203

152

16

Xilinx I2C

Symbol

Byte

Transaction

EepDriver

AXI Lite driver

Others

Figure 6.12: LUT utilization.

6.4.4 FPGA resource utilization

In this subsection, I report the FPGA resource utilization of the hybrid hard-
ware/software drivers. We focus on two main resources on FPGAs, look-up
tables (LUTs) and flip-flops (FFs). The usage data is extracted from the resource
utilization report generated by Xilinx Vivado. Since layers are implemented as
Verilog modules, Vivado also reports the resource usage of each layer.

LUT and FF utilization are shown in Figure 6.12 and Figure 6.13 respectively.
"Others" is calculated as the total LUTs or FFs minus the sum of all other parts,
attributed to the bus adapter and possibly the glue. As the split point moves up
along the stack, we see the resource usage of low layers decreases. I believe it
is due to Vivado performing cross-boundary optimization among modules.
Electrical, Symbol and Byte use fewer LUTs and FFs than the Xilinx

I2C IP. Transaction, which has a similar abstraction level as the Xilinx IP,
consumes 2.08× of LUTs and 2.11× of FFs. I believe this is a reasonable

94

6.4 Evaluation on real hardware

Xilinx I2C Electrical Symbol Byte Transaction EepDriver

Software-hardware split point

0

200

400

600

800

1000

1200

1400

1600

F
F

s

374

41

159

252

790

1377

2615 107
37 15

92

98
4715

92

93

382

208

15

92

93

365

595

217

15

Xilinx I2C

Symbol

Byte

Transaction

EepDriver

AXI Lite driver

Others

Figure 6.13: FF utilization.

95

Chapter 6 – A Trustworthy I2C Stack

overhead when comparing a generated driver with an IP crafted by human
experts, especially when considering that the Efeu-generated drivers possess
the assurance gained from the model checking. Furthermore, compared to the
available resources on commercial FPGAs, these utilization numbers are very
small. The FPGA on the MPSoC has 117120 LUTs and 234240 FFs [3]. In
terms of the total available resources, the Xilinx IP consumes 0.33% of LUTs
and 0.16% of FFs. The Transaction driver consumes 0.70% of LUTs and
0.34% of FFs. Even the entire stack on the FPGA (EepDriver) requires only
0.85% of LUTs and 0.59% of FFs.

This experiment demonstrates the Efeu-generated drivers consume very little
FPGA resources in terms of the total available resources, comparable to IP
crafted by human experts.

6.4.5 Discussion

Combining these evaluations, we demonstrate that Efeu helps to find the optimal
implementations depending on different criteria—performance, CPU usage, and
FPGA utilization.

On our evaluation platform, by implementing Byte and lower layers in hard-
ware and using the interrupt-driven interface, the driver can achieve about
350 kHz bus speed, consume less than 40% CPU, and use less FPGA resources
in both LUTs and FFs compared with the Xilinx IP.

If a bus speed higher than 390 kHz is required, at least Transaction and all
layers below need to be implemented in hardware. Based on that, implementing
the EepDriver layer in hardware only provides marginal benefits in the bus
speed and the CPU usage. However, if extremely stable bus speed is desirable,
EepDriver is a good option.

If there is no programmable logic available on the platform, Electrical is
the only option. In this case, the driver cannot achieve the full bus speed (neither
does the Linux bit-banging driver). However, it still possesses the assurance
provided by the model checking.

96

6.5 Related Work

6.5 Related Work

Driver reliability is a long-standing issue. There is therefore a large body of
work to improve driver quality. There are three main categories of approaches to
produce better drivers, and I survey them in turn: hardware/software co-design,
synthesis of drivers from specifications, and post-hoc verification of manually
written drivers.

6.5.1 Hardware/software co-design

Early approaches like Chinook [32, 33, 34] focused on I/O port allocation,
synthesis of multiplexers, arbiters and driver code to share processor interfaces
among devices. Chinook also synthesizes low-level hardware interfaces from
timing diagrams. The adapter that Efeu uses to ensure the timing on the bus is
currently hand-coded in 106 lines of VHDL but could be synthesized with such
an approach. CoWare [195] can synthesize more complex hardware to adapt
device interfaces to I/O interfaces available on a processor. It also generates
code to make these adaptions transparent and maintain the device interface
to software. These early systems usually make the assumption that the entire
system is synthesized from the specification, and they use ad-hoc protocols for
device interaction. In contrast, we demonstrate that we can verify a system
built from off-the-shelf components connected with a standard protocol. Ortega
et al. [144] extend Chinook to be able to instantiate standard bus protocols like
I2C or CAN and adapt device drivers to be able to use built-in bus controllers.
They consider global system analysis for fulfilling real-time constraints but
not for functional interference between devices. They also assume a standard
I2C implementation which leaves the many quirks in I2C hardware out of the
picture. Correctness of the co-designed systems is usually tested by full-system
simulators that can also be synthesized from the specifications. Efeu gives
formal guarantees on the properties it verifies. Later approaches then extend the
power of the synthesis: O’Nils and Jantsch [141] present a method to synthesize
DMA controllers to proxy off-the shelf devices to offload memory accesses from
the CPU. In HINGE [207] a higher level device API can be synthesized and the
correct usage of the API is checked at runtime and with BCL [97] the partition
between software and hardware can be chosen independent of the specification

97

Chapter 6 – A Trustworthy I2C Stack

and partial implementations (only software, hardware or interface) are possible.
None of these approaches focus on interoperability of off-the-shelf components
like Efeu does.

6.5.2 Driver synthesis

Earlier work in driver synthesis was mostly concerned with device register
specification. Devil [134] and HAIL [179] synthesize low-level register access
code from specifications describing the interface to hardware. In NDL [44],
one can additionally specify device state transitions and how they relate to the
register accesses. The NDL compiler then synthesizes functions for querying
and modifying the device state. In Efeu the interfaces are specified with ESI,
and we can then not only generate the software to access the registers but also
the register interface itself.

While these systems free developers from writing tedious bit manipulation
code, this is only a part of modern drivers. Later approaches aim to syn-
thesize full drivers with interface specifications to devices, operating systems
and other software. Notably, there is Termite [156, 157] and more recently
Ghost Writer [197]. Both systems are limited in the complexity of the device
that they can synthesize drivers for. This complexity only gets worse when
considering the interactions between devices. With Efeu we therefore chose to
go with a verification approach instead. I will review some existing approaches
next.

6.5.3 Driver verification

Verifying manually written drivers is pragmatic: the quality of existing drivers
can be improved without having to reimplement what is a significant part of the
OS [31]. SLAM [19] verifies the correct usage of OS APIs by drivers using
model-checking. SafeDrive [209] achieves a similar goal, but they synthesize
run time checks to catch driver errors and recover from them. Bošnački et al. [22]
use model-checking and static analysis to verify the correct use of Linux APIs by
an I2C driver. The biggest difference to Efeu is that we focus on the interaction
between the driver and the devices and between devices and not between the
driver and the OS. In that sense these approaches are complementary to ours.

98

6.6 Conclusion

An example of post-hoc verification that focuses on the interaction with the
device is Kim et al. [96] who verify a flash driver using model checking. There
are however limitations to how thoroughly software can be verified if it was
not implemented with verification in mind [99]. Many approaches therefore
implement the drivers in a highly stylized way. Chen et al. [28] target drivers
for interruptible kernels that they verify in Coq. Klomp et al. [100] target an
I2C driver. Pohjola et al. [148] propose Pancake, a DSL targeted at easily
writing verifiable device drivers and keeping the verification cost low. We
follow a similar approach with Efeu and specify our drivers in a DSL designed
for verifying the properties we are interested in. All the above focus however
on verifying individual drivers that handle a single device and therefore cannot
address interoperability issues that arise in shared bus settings such as I2C.

6.6 Conclusion

Amid all challenges of producing correct drivers, bus-based protocols like I2C
pose another: interoperability. I have presented Efeu which allows specifying
full I2C subsystems in DSLs, model checking them, and generating hybrid
hardware/software drivers. Efeu helps developers to explore trade-offs between
throughput, CPU usage and FPGA utilization.

While so far we have only applied the Efeu methodology to I2C, I believe that it
could be extended to other bus-based protocols like SPI or CAN. These protocols
share key features with I2C: multiple agents transmit data by modulating shared
wires, and the protocols consist of multiple abstraction levels with potential
quirks. The electrical characteristics, like the number of wires that are used,
only appear on the lowest layer of an Efeu specification. Furthermore, bus
timing is handled by the lowest-level hardware adapter, allowing Efeu to deal
only with discrete time steps. This adapter is currently handwritten but could
be synthesized using HW/SW co-design techniques for our approach to scale
better to other protocols (see Section 6.5.1).

Another item for future work is reducing the trusted compute base (TCB). A
large part of it is the Efeu compiler. I outlined some approaches for removing it
from the TCB at the end of Section 6.2.6.

99

Chapter 6 – A Trustworthy I2C Stack

The Efeu compiler and all our I2C specifications are available as open source2.
A correctly functioning I2C stack is critical to an important BMC task: power

management. Despite the remaining challenges, Efeu fills an important gap be-
tween the correct power sequences we can generate with the approach presented
in Chapter 4 and the hardware: By ruling out interoperability issues, we can
make sure that the sequences are correctly executed by the regulators. In the
next chapter I present a system design that helps preserve this correctness on a
real world BMC.

2https://gitlab.inf.ethz.ch/project-opensockeye/efeu

100

https://gitlab.inf.ethz.ch/project-opensockeye/efeu

7
System Design

BMCs fulfill critical tasks in the system that they manage. The correct
operation of any such system depends on the correctness of its BMC. The implicit
trust we put in BMCs is however not warranted, as the vulnerability analysis in
Chapter 3 shows. All the mainstream BMC systems for which the information
is publicly available are Linux-based. This means that any vulnerability in the
Linux kernel is a vulnerability at the heart of our computing infrastructure.

The security of BMCs is however only half the story. Arguably one of the
most critical functions of a BMC is power management. To ensure the correct
functioning of the platform and the safety of the hardware we have to trust
the components that implement this and other critical tasks. In the previous
chapters we have seen how we can synthesize trustworthy implementations for
these components from purpose-built hardware models. These critical services
however are not the only processes are running on a BMC. There are BMC
components that are less trusted. One reason can be their exposure to the
outside world, like a webserver for remote management or a protocol handler that
communicates with the firmware on other processing elements on the platform.
Another reason can be the lower assurance implementation of a component to
save development cost. The escalation of privilege vulnerabilities in Chapter 3
demonstrate the risk: a vulnerability in the webserver can be used to affect a
critical function of the system. The vulnerability analysis showed that this type
of bug is the most common in today’s BMCs.

This makes BMCs mixed-trust environments. It is therefore not enough to
create trustworthy implementations for critical components, we also need to

101

Chapter 7 – System Design

isolate them from less trusted components. Specifically we need to guarantee
confidentiality (a components data can not be access by another component),
integrity (a components data can not be altered by another component), and
availability (a component can not be kept from running and fulfilling its purpose).
State-of-the-art systems do not offer these guarantees: on the one hand their OS
kernels (usually Linux) are known to have vulnerabilites [171] and on the other
hand the way these systems are structured puts a lot of ambient authority in
components that can be attacked, usually even remotely. A successful attacker
can abuse all this ambient authority to wreak havoc in the system.

In the following I present a proposal for a system design for BMCs that
addresses this challenge. It uses seL4 [99] as a separation kernel to provide
formally proven isolation guarantees between components. This is however an
implementation choice and other solutions exist. I start by exploring different
ways of how to provide the necessary isolation and will then present our proposal.
We will also see how an existing BMC system – e.g., based on OpenBMC – can
be retrofitted with a trustworthy design. In the end I will go back to the classes
of BMC vulnerabilities identified in Chapter 3 and see how the system design
helps prevents them.

7.1 Providing isolation

There are two major ways of providing isolation between trusted and untrusted
components: the first one we are going to look at is physical separation, i.e.,
running the trusted components on separate hardware from the untrusted ones.
This seems to be the trend in industry. Secondly, I am are going to survey
options for providing the isolation in software.

7.1.1 Physical separation

In theory, the strongest isolation between critical components and untrusted ones
can be achieved by not having them share hardware resources. Indeed, as we
will see, there seems to be a trend in industry towards this solution. Hardware
separation comes with its own challenges though. I will provide an overview
over existing systems and these challenges here.

102

7.1 Providing isolation

We have already encountered a simple form of hardware separation in Chap-
ter 4: often the power sequencing is not fully done in software but in a CPLD.
This provides very weak isolation though as usually the BMC still has full con-
trol over the power sequencer. It is rather a measure to offload complexity from
the BMC’s power management software.

Systems that employ hardware separation for increased security do so mainly
to ensure the integrity of platform firmware. They use a hardware root of trust
(RoT), often also called a silicon RoT for this purpose. A RoT is a tamper-proof
cryptographic processor that manages keys and offers functions like verifying
signatures on firmware files and can provide a cryptographic identity for the
machine. Google uses their own design called Titan to ensure the integrity
of firmware in their machines. Titan interposes between the machine’s BMC
and its firmware flash storage. Before it lets the BMC boot, it verifies the
cryptographic signatures of the firmware stored on the flash [159] to ensure
it has not been tampered with. Titan has been open-sourced as OpenTitan in
2019 [76]. It could potentially not only be used to interpose firmware loading
but also for other communication of the BMC with the platform like power
sequencing commands. There is evidence that this is planned or even already
done as the OpenTitan documentation mentions I2C as a potential requirement
for the Platform Integrity Module use case [143].

A more radical approach is taken by AWS with their Nitro design [17], which
powers Amazon Elastic Compute Cloud (EC2). Nitro completely separates the
control plane of the machine from the mainboard with the application cores
that run customer workloads. The control plane is implemented on Nitro cards.
These include cards for I/O like network and storage, but the interesting one
for our purposes is the Nitro Controller. It acts as a RoT for the system and
like Titan is responsible for firmware integrity: the firmware for both the BMC
of the mainboard and the application cores is loaded from storage provided by
the Nitro controller. This is facilitated by the Nitro Security Chip that sits on
the mainboard. Additionally, the Nitro Security Chip mediates access to any
firmware on the board, including access to the BMC from the application cores.
If the machine is used as a virtual machine host, the application cores run the
Nitro Hypervisor which receives its virtual machine management commands
from the Nitro Controller. The Nitro Security Chip than acts as a defense in
depth mechanism to double-check accesses to board functions that have been

103

Chapter 7 – System Design

cleared by the hypervisor. Additionally, this allows running the machine in a
mode where the customer gets bare metal access to the application cores: the
Nitro Security chip then acts as the secure monitor that prevents a customer
from accessing configuration relevant to datacenter security. It is not clear
which component handles the low level management of the mainboard like
power sequencing. However, the fact that there is still a BMC next to the Nitro
Security Chip on the mainboard, leads us to believe that it still fulfills these
management functions, probably supervised by the Nitro Security Chip. EC2
offers Intel, AMD and Graviton CPUs (Graviton is an Arm server chip designed
by Amazon for its cloud). Having a BMC as part of the mainboard probably
enables designing the Nitro control plane more independently of the different
mainboards used for the different processor types and their potentially quite
different power distribution topology.

The last system that we are going to look at is a rack scale system built by
Oxide Computer Company1. It takes disaggregating the BMC by physically
partitioning the functions traditionally implemented by it to the most extreme
(at the time of writing). An Oxide rack consists of up to 32 AMD-Milan-based
single socket compute sleds, two network switch sleds and a power shelf [42]. All
boards are custom designed and do not have a traditional BMC. Instead they have
a service processor and a hardware RoT. The service processor takes on the low-
level management functions of a BMC, e.g., power and firmware management,
and serial console access but does not offer high-level management functions
like user or management APIs served by a webserver. The higher-level functions
are instead implemented in a distributed program called Nexus that runs on all
compute sleds. It exerts control over the rack through the sled agents running
on each sled. The rack’s network is partitioned into a data plane network and
a management network. The latter connects all service processors in the rack.
The two compute sleds adjacent to the switch sleds are dedicated management
gateways that control the switch configuration and forward control plane traffic
onto the management network [43]. Organizing the control plane in this way
without traditional BMCs on their boards, required Oxide to do completely
custom board designs. They also follow an aggressive open source strategy with
the promise to make all software and firmware running on the rack publicly

1https://oxide.computer/

104

https://oxide.computer/

7.1 Providing isolation

available [27]. The motivations and implications of this are out of the scope of
this chapter, but I will come back to them in Chapter 8.

To summarize, industry has already taken steps to distribute the immense
power concentrated in BMCs onto smaller hardware components. The main
efforts are about establishing trust in system firmware through cryptographic
means implemented in hardware RoTs. Most designs however, especially for
off-the-shelf hardware, retain a monolithic BMC. To reduce the required trust in
the BMC its actions can be monitored by a physically isolated component. To
really increase safety this would mean that this additional component needs an
understanding of the tasks it is monitoring, e.g., power sequencing. This then
begs the question if it would not be safer and more efficient if that component
would perform the task itself instead of just monitoring the partially trusted
BMC. Retaining a monolithic BMC most likely also simplifies board design:
adding chips that interpose between components on a more traditional design is
easier than a full custom design that would truly disaggregate the BMC.

Physical isolation is of course not an option for existing systems as it requires
hardware changes. I am going to survey options for software-based isolation
next.

7.1.2 Software isolation

There is a large body of work on software isolation, and I will not attempt to
give a full survey here. I will rather provide classification criteria with examples
of systems and a discussion of which of these criteria are desirable for a BMC
system. The criteria are:

• Isolation guarantees: formally verified vs. unverified

• Isolation mechanism: hardware assisted vs. pure software

• System maturity: research prototype vs. commercially deployed

• System applicability: general vs. special purpose

• System partition: static vs. dynamic

105

Chapter 7 – System Design

Additionally, we will analyze potential paths to incrementally migrate existing
BMC systems to a more secure design. Such a migration strategy is desirable:
it allows retrofitting existing systems without having to re-implement the entire
BMC at once. It also enables early experimentation on real hardware without a
fully redesigned BMC stack.

Guarantees. With the advancement in computing power and formal tech-
niques, OS verification has seen significant advancements since the beginning
of the millennium. For an excellent introduction and a survey up to 2009 I
recommend Klein’s work [98]. I list the most notable OS verification projects
in the following. seL4 [99] provides a full functional correctness proof and a
proof of high-level security properties confidentiality, integrity and availability.
CertiKOS [74] proofs functional correctness as well. While seL4 proofs that the
semantics of the C code are carried through to the assembly level using trans-
lation validation [170], CertiKOS achieves the same with a verified C compiler.
SeKVM [114, 115] proofs functional correctness for a hypervisor including
protecting virtual machine memory from devices that use direct memory access
(DMA). The proofs for these projects are all formalized in interactive theorem
provers which offers comparably little proof automation. Other projects like
Verve [206], Hyperkernel [140] employ so called “push-button verification”
where a solver verifies code automatically based on code annotations. This ap-
proach usually needs severe limitations in the complexity of the systems and/or
the strength of the properties verified to work [25]. More modern tools show
promising advancements in this area as well [108].

Existing BMC systems could be improved by using, e.g., a hardened Linux
kernel. However, with the above advancements in producing verifiably correct
OS kernels, we are running out of excuses for not introducing such guarantees
into what are arguably some of the most critical systems in modern compute
infrastructure. While a correct kernel does not automatically mean a correct
system [25], work on building fully verified systems warrants optimism that a
carefully designed system can be verified [40, 145].

Mechanism. Software can either provide isolation by using hardware features
such as a memory management unit (MMU) or purely by software means. Note

106

7.1 Providing isolation

that hardware-assisted isolation is not the same as the form of isolation discussed
in Section 7.1.1. In the former case, the two components being isolated from
each other still run on the same physical core. Software-based mechanisms
require the components to be “well-behaved”, i.e., they cannot be able to issue
arbitrary memory requests. This is usually achieved by using a memory safe
language and trusting the compiler to statically enforce isolation. Examples
are Modula-3, which was used to implement SPIN, (extended) C#, which was
used in Singularity and more recently Rust, which was used to, e.g., implement
RedLeaf [139]. The work on RedLeaf also includes a much more thorough
survey of language-based isolation. The argument for not using hardware mech-
anisms is the context switch overhead [139] or to support systems that do not
have memory protection hardware. Any system that needs to run untrusted code
however, has to use hardware isolation features and all mainstream OSs like
Linux or Windows fall in this category. A BMC should arguably not run any
untrusted code and so both approaches are applicable. Indeed, RedLeaf targets
systems like BMCs [138]. However, with a language-based approach all com-
ponents need to be implemented in this language which prevents incremental
migration. As we have seen in Chapter 2, the most common SoCs for BMCs
have cores with MMUs. I therefore favor a hardware-based mechanism.

Maturity. This criterion is about how mature the system is in terms of doc-
umentation, hardware support and ecosystem. Many verified systems, are not
much more than research prototypes. As the focus is on designing the BMC
stack itself and not advancing the state of the art in software-based isolation I
favor a system that is easy to use or at least does not pose a major hurdle when
implementing a BMC on top of it.

Applicability. This criterion is about whether a system is general purpose or
tailored to specific hardware or use cases. I favor flexibility here such that the
BMC design could be deployed on a range of systems.

Partition. Software isolation approaches can also be classified by whether
the system is partitioned statically or whether new isolated components can be
created at runtime. In a BMC the components are usually known statically. For

107

Chapter 7 – System Design

experimentation, dynamicity would offer more flexibility but all in all this is not
a decisive criterion.

In summary, the most important criterion is the strength of the isolation
guarantees the system delivers as they strongly influence the overall security of
the BMC stack. The isolation mechanism plays a major role in being able to
offer a migration strategy where we need to be able to run legacy code next to the
reimplemented BMC tasks. Maturity is an important criterion for being able to
focus on providing a safer and more secure BMC stack without being impeded
by system limitations. Finally, applicability and partition play a less important
role for us.

7.1.3 Summary

While physical separation of BMC tasks potentially offers the best isolation be-
tween trusted and untrusted components it also comes at a high implementation
cost. This is especially true when following a radical approach like Oxide does.
Even in their system however, it is hard to tell from public information what the
exact trust relationships between different hardware and software components
are. A BMC stack cannot be evaluated without running it on real hardware,
and it therefore needs to be able to be deploy it on hardware that we as re-
searchers can get access to. The currently only experimentation platform is
Enzian. It follows a more conventional platform architecture with a dedicated
SoC for the BMC. A design with the same hardware requirements as existing
BMC stacks like OpenBMC could also be ported to a commercial system – if
one with sufficient documentation ever becomes available. Such a design needs
to be software-isolation-based with strong formal guarantees, the ability to run
legacy code and enough maturity to not impede design freedom. I describe the
proposed design in the next section.

7.2 A trustworthy BMC design

To potentially profit from the strongest isolation guarantees I opted for a system
with a full functional correctness proof: seL4. I say potentially here as Enzian’s

108

7.2 A trustworthy BMC design

BMC platform is not in the set of verified configurations [169]. This is a
problem with any formally verified system: the proofs need to make fairly
specific assumptions about the hardware platform. A platform for which these
assumptions have not been checked, therefore does not offer the full assurance
of a correctness proof. However, full system verification is out of the scope of
this dissertation. I propose a design here that is amenable to verification. Even
without the full formal verification available for the platform, it still profits from
the assurance of the kernel sharing much of its code with verified platforms [79].
This will especially be true once the verification of the 64bit Arm version of the
kernel is completed, which is scheduled to happen in the near feature [168].

I chose seL4 over its competitors for its active community with members
from both academia and industry [167]. seL4 has been successfully deployed
in real world systems, is the best performing microkernel and its capability-
based security allows very fine-grained access control [79]. It supports x86,
Arm and RISC-V architectures and is a general purpose kernel with a focus on
embedded systems, specifically hard real time and mixed criticality pplicaaions.
It supports dynamic creation and destruction of isolation domains. However,
current research focuses mostly on statically partitioned systems. [80]. While
verification of a multicore version of the kernel has not been completed yet,
there is ongoing research towards SMP and clustered multikernel support [113,
166].

seL4 also has a story for full-system verification including a migration strategy
through cyber retrofit [79] (see Section 7.2.1). More recently work on an OS on
top of the seL4 microkernel has begun [70]. It is based on a new userspace SDK
called Microkit (formerly Core Platform) designed to improve usability [80].
Work on verifying it has begun [145]. By building on this active research, the
secure BMC design will be able to profit from new breakthroughs in full-system
verification.

The architecture of the design is depicted in Figure 7.1. It uses seL4 as a sep-
aration kernel to isolate trusted and untrusted components from each other and
ensures a least-privilege communication pattern. It employs the cyber retrofit
strategy to gradually migrate the existing OpenBMC stack to a more secure
seL4 native stack (Section 7.2.1). The trusted components are synthesized from
purpose built hardware models (Section 7.2.2). To extend trust further down,
hardware components are also be synthesized where appropriate (Section 7.2.3).

109

Chapter 7 – System Design

trusted & trustworthy untrusted

BMC hardwareI2C controller

seL4

Power manager

I2C drivers

Power sequencer

VM

Linux kernel

OpenBMC
Remote
console Webserver …

Figure 7.1: Trustworthy BMC architecture with different trust levels for compo-
nents

7.2.1 BMC cyber retrofit

Being able to reuse components from existing BMC stacks is important for
several reasons. For one, trustworthy implementations for some components
like a webserver might not add much to the overall assurance of the stack.
Furthermore, reusing parts of the existing stack while gradually replacing critical
components with trustworthy implementation provides a migration path where
the new system can be tested on real hardware without losing functionality. The
second part is important as the Enzian cluster is actively used for research on
cache coherence [162], hardware architectures for serverless computing [177],
hybrid memories [24] and more. Being able to deploy the new design early on
will provide validation that the ideas work in practice.

This gradual migration of a legacy system to a trustworthy system is called
cyber retrofit and has been pioneered in the DARPA HACMS program [40].
They demonstrated the strategy by cyber-retrofitting the mission computer of a
quadcopter and an unmanned military helicopter. The resulting systems resisted

110

7.2 A trustworthy BMC design

a professional penetration testing team. As a first step the existing Linux-based
system was moved into a virtual machine with seL4 as a hypervisor. This
step does not add assurance but is a stepping stone for the next steps. From
here individual components can be reimplemented and moved to native seL4
components without changing the overall system functionality.

We currently have a prototype of the Enzian BMC where we have completed
the first step of virtualizing OpenBMC. As mentioned in Chapter 2 the BMC in
the original design for Enzian was Armv7 based. seL4 does not support running
virtual machines on this architecture, so we had to upgrade the hardware platform
to Armv8 (this came with its own set of challenges that I will come back to in
Chapter 8). In the next sections I am going to lay out how I envision completing
the BMC cyber retrofit.

7.2.2 Creating trusted BMC components

Virtualizing the existing BMC stack itself does not add any assurance to the
system. To increase the trustworthiness of a BMC, its critical components need
to be isolated from the untrusted components, i.e., moved out of the virtual ma-
chine. Crucially however, the components themselves need to be trustworthy.
Naturally, many critical components in a BMC interact closely with the hard-
ware. Examples are components for power, clock, and thermal management,
components that manage firmware for other processing elements on the platform
and components that handle communication with other processing elements e.g.,
to allow the OS on the application processor to reboot or power off the machine.
The correctness of these components naturally heavily depends on their correct
understanding of the hardware they interact with. To produce trustworthy imple-
mentations for them, we therefore need models of the hardware and if we want
to ever be able to give formal guarantees about the components’ correctness,
these models need to have formal semantics.

The arguably most critical component in a BMC is the power manager:
without it, the machine cannot be turned on and, as we have seen in Chapter 4,
bugs can permanently damage hardware. I have presented a model for power
distribution networks in Chapter 4, and I have demonstrated that we can generate
code for a power sequencer from this model. In Chapter 5 I then also laid out
an approach for building such a power sequencer. Furthermore, in Chapter 6 I

111

Chapter 7 – System Design

presented Efeu, a framework for producing provably interoperable I2C stacks.
Together they can be used to produce a trustworthy power manager. This will
require scaling the verification of Efeu stacks to 10–20 devices on a bus and
more layers to implement SMBus and PMBus functionality. I outlined some
potential strategies to achieve this at the end of Section 6.3.1.

Models for other components like thermal management or firmware provi-
sioning remain future work.

7.2.3 Trusted BMC hardware components

Many BMC components are tightly integrated with the hardware that they run on
and manage (cf. Chapter 4 and Chapter 6). It is therefore vital to the correctness
of the system that the hardware models used to build these components are
correct about the hardware’s behavior. One way of ensuring this is to use the
same hardware model to not just generate software, but also the hardware itself.
I have presented such an approach for I2C controllers in Chapter 6. We have also
experimented with pushing higher-level BMC functions into hardware for more
deterministic performance [190]. The experimental system implemented a PID
controller in hardware that used inputs from temperature sensors to determine
fans speeds.

We also need to be able to ensure that trusted hardware can only ever be
accessed by trusted components and that untrusted hardware cannot interfere
with trusted components. Especially the second part is a hard problem and
beyond the scope of this dissertation. There is however work in the larger
context of this dissertation that aims to solve this problem, and I will return
to this in Chapter 8. Preventing untrusted components from directly accessing
trusted hardware can be achieved through memory protection, given that trusted
and untrusted devices do not share protection granules, i.e., pages in an MMU-
based system. An example for such a violation would be a GPIO bank that
has pins for both untrusted and trusted functions. The FPGA on the Enzian
BMC allows us to experiment with this and reroute signals to achieve separation
between trusted and untrusted functions.

112

7.3 Preventing vulnerabilities by design

7.3 Preventing vulnerabilities by design

In Chapter 3 I presented a taxonomy for BMC vulnerabilities. This analysis
informed the design that I have presented here. In this section I am going to
show how the design prevents some classes of these vulnerabilities and helps to
prevent others.

7.3.1 Preventing vulnerabilities in critical components

Critical components are by definition trusted, and the design requires making
these trust assumptions explicit. For the system to be trustworthy as a whole,
these trusted components need to be trustworthy. This means that we need
some form of assurance, ideally formal verification. While I have not performed
full formal verification of a component in this dissertation, I have laid some
important groundwork by developing hardware models with clear semantics
that can be used as a basis for formal verification. Namely, in Chapter 4 I
presented our model for power and clock distribution topologies from which we
can derive correct power sequences. In Chapter 6 I have shown an approach to
produce trustworthy drivers for chip-to-chip protocols.

7.3.2 Preventing privilege escalation vulnerabilities

As we have seen in Chapter 3 about half the vulnerabilities in today’s BMC
systems are privilege escalations. The design prevents these by providing strong
isolation between trusted and untrusted components. The security proofs of the
seL4 kernel guarantee that a compromise stays contained within a component.
Additionally, the capability-based access control in seL4 lets us implement the
principle of least privilege [79]. This means that a component has exactly the
rights it needs to fulfil its task, and there is no ambient authority that can be
abused by an attacker. One aspect of this is a strictly least-privilege communi-
cation structure: components can only communicate with the components that
they need to and the communication graph can be made explicit. By ensuring
that untrusted components only have the authority to perform actions that are
safe, even if executed on behalf of a potentially malicious actor, we can prevent
privilege escalation in the system.

113

Chapter 7 – System Design

7.3.3 Containing non-critical vulnerabilities

The vulnerabilities in the last category are non-critical vulnerabilities: vulner-
abilities that already in today’s systems stay contained within the vulnerable
component. The exception here are client-side vulnerabilities which while not
being able to directly spread into the system can be used to trick an authorized
user into performing a privileged action on behalf of an unauthorized attacker.
The mitigation of these kinds of vulnerabilities are out of the scope of this dis-
sertation. The other two types are code execution and DoS vulnerabilities. The
mechanisms described in the last section ensure that no privilege escalation can
result from a code execution vulnerability. Recovering from a DoS attack on a
vulnerable component is not directly prevented by the system design. However,
recovery mechanisms can be built using, e.g., watchdogs. The mixed-criticality
support in seL4 can prevent a component from monopolizing the CPU and
ensures that critical components still get the required CPU time to fulfil their
task [127].

7.4 Conclusion

In this chapter we have seen how a trustworthy BMC system can be designed. I
have laid out how this design can prevent entire classes of BMC vulnerabilities
instead of fixing vulnerabilities when they get discovered as state-of-the-art sys-
tems do. As the design is not implemented yet, there are challenges remaining. I
will present some of them in the next chapter before concluding this dissertation
in Chapter 9.

114

8
Future Work

Building BMC for the Enzian research computer taught me many things
about how modern servers work. While I believe that the research in this
dissertation is an important contribution to more trustworthy board management,
it also surfaced many interesting problems that could not be pursued yet. In the
following I describe some of the most intriguing ones.

8.1 Cyber-retrofitting BMCs

In Chapter 7 I proposed a design for a trustworthy BMC system. I also de-
scribed a migration strategy from a current system like OpenBMC using cyber
retrofit [40]. We have started to retrofit the BMC in Enzian and completed the
first step of virtualizing the Linux-based OpenBMC distribution with seL4 as a
hypervisor. The prototype is based on CAmkES [106], the previous seL4 com-
ponent framework. It has since been superseded by the seL4 Microkit [80]. The
first step towards completing the cyber retrofit would be to port this prototype to
a Microkit-based system. I do not expect any major challenges in this endeavor.
The next step is to produce trustworthy implementations of critical components
and move them out of the virtual machine. One such component is the power
manager and I have already outlined how the work presented in Chapter 4, Chap-
ter 5 and Chapter 6 can be combined to produce a trustworthy power manager
(cf. Section 7.2.2). I already mentioned the challenges I anticipate (scaling Efeu
verification). However, there are more areas where further research is needed.

115

Chapter 8 – Future Work

8.1.1 More trustworthy components

The power manager is not the only critical component. There are obvious
other ones like the component that manages firmware for all the devices on the
platform (including the BMC itself) or a component that handles authorization.
However, in general what constitutes a critical component also depends on the
threat model for the platform and the BMC. If, e.g., the firmware and OS on
the application CPU are trusted, a trustworthy component that offers a virtual
console to the application CPU might add to the trustworthiness of the system.
However, if the OS on the CPU is untrusted it might not, as the OS could
tamper with the input and output itself. An analysis to determine where to focus
attention is needed.

Once the critical components have been identified, we then need domain
specific models for them that they can be verified against.

8.1.2 Component interfaces

Another open question is what interfaces these components should offer. For
most components I anticipate there to be a trade-off between usability and safety
and/or security. In the case of the power manager, the safest interface would be
a very high-level one that only offers operations to turn the machine on or off.
On the other hand, a more low-level interface would allow for more fine-grained
control. Being able to only power the CPU or the FPGA on Enzian is such an
example. The larger the interface however, the more permutations of operations
exist and the harder it is to check whether unsafe permutations exist. Then
there is also the question of trust in the user. In the extreme case the question
is “should a privileged enough user be able to perform operations that could
damage the hardware?”. An interesting question is, how we can use models (like
the one for the power topology) to give informed answers to such questions or
even synthesize safe interfaces.

8.1.3 BMC interfaces

There are two broad classes of interfaces to the BMC: external interfaces that
are used for remote management and intra-machine interfaces through which

116

8.2 Hardware topology and schematics

the BMC can communicate with other components on the board and offer
services like turning power on and off on the request of the application OS.
There are several industry standards for protocols. IPMI[90] is used both in
external and intra-machine interfaces. It is however infamous for its security
issues [21]. Newer standards include Redfish [58], Management Component
Transport Protocol (MCTP) [56] and Platform Level Data Model (PLDM) [57].
Redfish is a REST-based protocol and data model for remote management.
MCTP [56] and PLDM [57] are a data model and protocol for intra-machine
interfaces. Analyzing these protocols and their implementations for security
flaws is another interesting research direction. These protocols are also built
around current industry standards, and it is unclear how well they are suited for
a trustworthy design like the one proposed in this dissertation. As part of the
Enzian project we are experimenting with a clean-slate design called Enzian
Firmware Resource Interface (EFRI) [205]. EFRI is designed as a general
intra-machine interface protocol between a BMC and device firmware but also
between different levels of the software stack like the firmware and OS on an
application CPU. With EFRI we hope to gain insights into the requirements for
such a protocol.

8.2 Hardware topology and schematics

8.2.1 Extracting topology information

In Section 7.2.2 I explained how to build trustworthy components for a BMC
from formal hardware models. To be able to do so, we need instances of these
models for the platform at hand. While the models are designed to ease the
collection of the needed information (cf. Section 4.5.4), it is still a manual effort
to create the hardware descriptions. The formal models are also not the only
place where such hardware information is needed. Any systems software needs
information about the hardware it is running on. Some hardware is discoverable
through mechanisms like ACPI [192] or via PCIe’s Enhanced Configuration
Access Mechanism (ECAM) [146]. These mechanisms however need to be
configured by firmware to work, which just relegates the problem to a lower
level. Linux, e.g., encodes static hardware information in Devicetrees [55]. A

117

Chapter 8 – Future Work

lot of this information is hardware topology, like what devices are attached to
a certain bus or, in the case of our power topology model, which rails supply a
certain device and which regulator drives the rail. This topology information
is contained in the schematics for a platform. For large platforms, reading
these schematics can be tedious – the schematics for the Enzian mainboard
are 121 pages long. Extracting the information manually is an error-prone
process. However, this information can be extracted in machine-readable format
from the CAD tool that was used to design the platform. These so called
netlists can then be fed to a tool that automates at least parts of the process. In
preliminary experiments we were able to extract I2C bus topologies from the
Enzian netlists [200].

8.2.2 Generating netlists from specifications

When we upgraded the BMC module on Enzian to support running a virtualized
Linux over seL4 (cf. Section 7.2.1) we faced the opposite challenge: the
new BMC module was not pin-compatible with the original one, so I had to
design a shim PCB that slots between the Enzian mainboard and the BMC
daughter board. Not only did this board have to reroute the majority of signals,
it also needed to level-shift a few as the new board offers fewer 3.3 V pins
and more 1.8 V pins instead. The search space for finding a working pin
allocation with a minimum amount of level-shifters needed is increased by the
fact that some banks on these SoMs have configurable I/O voltages. These
are configured by applying the desired voltage to a set of reference voltage
pins. The manufacturer of the modules offers spreadsheets with the pinouts that
then have to be cross-referenced with the reference manual to determine which
reference pins determine the I/O voltages of the various banks. To the best of
my knowledge this is the current state of the art.

I solved the problem by manually defining the rerouting done by the shim
board and then building a relational model of the new BMC module the shim
board and the Enzian mainboard. I could then check whether my solution
correctly rerouted all the signals to pins with matching reference voltages by
joining the tables on the pin number.

This not very confidence-inspiring process led us to experiment with using
an satisfiability modulo theories (SMT) solver to automatically come up with a

118

8.3 Opening BMCs for research

solution for such problems. We defined a SMT encoding for PCB components
and netlists and the solver was able to come up with solutions for the toy
examples we fed it. I think that this is a promising direction that needs further
investigation.

8.3 Opening BMCs for research

So far I have described research directions that benefit a trustworthy BMC
design. Throughout this dissertation we have mostly looked at BMCs through
the lens of security and safety. From this perspective the immense power BMCs
wield over the platforms they manage is a challenge. However, their central
position in modern computer systems is also an opportunity. Research into the
power-related behavior (e.g., power consumption or effects of marginal voltage
and clock supply on processors) requires instrumentation [71, 189, 158]. A
BMC has access to power consumption information about the entire platform
and can adjust voltage levels and clock frequencies freely. Open access to the
BMC can therefore offer some of this instrumentation for free. What’s more,
contrary to using mechanisms like Intel’s RAPL [53], the BMC enables out-
of-band access to these features. The power consumption data can therefore
be gathered without interfering with the analyzed workload at all. The Enzian
BMC can query each sensor on the platform in about 5 ms. Detailed power
measurements coupled with application and CPU performance metrics can be
used to develop models for power-aware resource scheduling and allocation.

We demonstrate the Enzian BMC’s capabilities in this regard by monitoring
the primary power regulators for the CPU and FPGA cores and the CPU-side
DRAM channels, sampling each every 20 ms. Figure 8.1 shows a time series of
this power data as Enzian boots (with a power spike as the CPU is powered on),
checks DRAM, runs a series of memory tests on the CPU, and then initiates
an FPGA stress test by switching blocks of flip-flops on every clock cycle. As
can be seen, the Enzian BMC can both sample at high rates and offers detailed
per-domain measurements, allowing researchers to examine, in real time, the
energy performance of hybrid applications and systems software. In practice, all
the power and clock regulators in the system, together with a dozen temperature
sensors, can be monitored in this way. The smaller FPGA on the BMC can

119

C
ha

pt
er

8
–

Fu
tu

re
W

or
k

FP
G

A
off

FPGA
idle

FPGA power burn
(1/24 area steps)

FPGA
idleFPGA progFP

G
A

on

memtest: random data

mem
tes

t: marc
hin

g row
s

A
dd

re
ss

bu
st

es
t

D
at

a
bu

st
es

t
BD

K
D

RA
M

ch
ec

k

idleidle

CPU off

CPU on

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

time [s]

Po
w

er
[W

]

FPGA
CPU

DRAM0
DRAM1

Figure 8.1: Using the Enzian BMC to measure the power consumption of primary components during a
boot, diagnostic, and stress test

12
0

8.4 BMCs and the de-facto OS

also provide hardware support for such measurements, facilitating targeted and
precise power and performance research.

The potential of offering a very fine-grained but safe power management
interface (cf. Section 8.1.3) also opens up opportunities for research into, e.g.,
performance-aware power managers [72, 73].

8.4 BMCs and the de-facto OS

While I focused on BMCs in this dissertation, platform management is a larger
problem. Almost every single chip on a PCB runs some sort of firmware or
OS kernel. This body of software – even if some of it is called firmware – as

a whole manages the hardware in the system and therefore fulfills the function
of an OS. In other work we have termed this collection of software the de-facto

OS of a computer system [65]. This is to stress the fact that while it was not
designed as an OS it effectively is. While BMCs take an important role in this
de-facto OS, we need more than trustworthy BMCs to truly achieve trustworthy
platform management. We need holistically designed systems as advocated by
one of the founders of Oxide Computer [27].

One symptom of the lack of design in the de-facto OS are so-called cross-SoC
attacks [65]. In these exploits an attacker compromises the firmware of one of
the many devices in a system. Further devices can then be compromised by
abusing misconfigured memory protection units. There is at least one such
vulnerability that affects BMCs [49]. In affected systems the BMC’s memory
can be compromised from the application processor through a DMA-capable
host-to-BMC bridge. More research is needed to systematically prevent these
types of bugs.

121

9
Conclusion

Modern computer systems are so complex that they need a computer inside
the computer to function. BMCs are responsible for everything from turning
the system on, over provisioning firmware for components on the board, to
monitoring and remote management. This makes them one of the most critical
systems in modern compute infrastructure. However, the state of the art for them
does not live up to this role.

Because of their traditionally proprietary and closed nature, BMCs have been
neglected by the research community. Inspired by the very instructive experience
of building a BMC for a heterogeneous research system, this dissertation changes
that. In Chapter 3, I identified the major problems with the current state of the
art. In the remainder of the dissertation I then proposed several pieces to a
solution.

The experience with developing the power management stack for Enzian made
me aware of how complex the power and clock distribution networks in modern
computers are. At the same time there is a lack of publicly available literature
on the topic. In Chapter 4, presented a model that facilitates describing these
systems and formally captures the complex sequencing requirements. Further-
more, I have demonstrated that we can generate working power sequencing code
that can be used on a BMC. These generated sequences, backed by a formal
model, provide both higher assurance and better automation than traditionally
hand-crafted ones.

To ensure the semantics of the generated sequences are carried through, we
also need reliable drivers for the power regulators. They are connected to the

123

Chapter 9 – Conclusion

BMC over chip-to-chip protocols like I2C. Efeu, the framework I introduced in
Chapter 6, produces drivers for such devices from specifications. The specifica-
tions are model-checked to rule out inconsistencies between devices that could
result in driver bugs and system failures. We can generate both hardware and
software to provide on-par performance with stacks based on off-the shelf I2C
controllers. We demonstrated that the generated stacks work on real hardware.
While we have not yet built a system of the size of a typical server’s power
distribution network, I am confident that this can be achieved.

Finally, in Chapter 7 I proposed a system design for a trustworthy BMC. It
uses a state-of-the-art formally verified microkernel to provide isolation between
components. This allows for trusted and untrusted components to securely co-
exist. The proposal also includes a migration strategy to retrofit existing BMCs
with this secure design.

Despite the remaining challenges and open questions (cf. Chapter 8) I believe
that the research in this dissertation is an important step to a future of trustworthy
BMCs. Apart from contributing concrete solutions for some of the major
problems with BMCs, it hopefully also helps raise researchers’ interest in the
problem.

Its closed nature does not just prevent assessing the quality of firmware but
impedes understanding of how hardware works at the lowest level visible by
software. The experience with Enzian shows that very little of the hardware is
documented at this level. Efforts to create open source firmware are therefore
crucial to make this knowledge available outside of chip and board manufactur-
ing companies.

Power sequencing is just one example of an area where very little concrete
knowledge exists outside these silos. Another one is DRAM initialization. There
are several timing parameters and reference voltages that need to be correctly
set for each individual memory module. Standards like DDR 4 schematically
describe how to find the correct values for these parameters [91]. In reality how-
ever, what software interacts with are memory controllers with an enormously
complex and badly documented register interface. This is again something
learned the hard way when trying to re-implemented DRAM training for En-
zian [109]. The ThunderX-1’s memory controllers have about 100 registers and
anecdotal evidence from private conversations suggest that this is dwarfed by
the memory controller interfaces in other CPUs. While the ThunderX-1 manual

124

describes a 15-step initialization sequence for the memory controllers, the code
supplied by the manufacturer inserts several undocumented steps that seem to
be crucial for reliable operation. This code however also supports several other
chips and DRAM standards and isolating which parts are important for the CPU
on Enzian is not an easy task – the full code consist of about 10 thousand lines.

We need more efforts that make such knowledge available. As OS researchers,
we need to understand how computers work at this level if we ever want a chance
at building truly trustworthy platforms.

125

List of Figures

2.1 Picture of the Enzian board with the BMC 8
2.2 The testbed used to prototype the power sequencing software . . 12
2.3 Debugging power sequencing code 13
2.4 Picture of the setup for the first bringup of an Enzian board. . . . 16

3.1 Number of vulnerabilities in BMCs over time 19
3.2 Percentage of BMC vulnerabilities per category. 21
3.3 Breakdown of non-critical BMC vulnerabilities 23

4.1 Power tree of a modern two socket server (Enzian) 28
4.2 Detail view of a power tree . 32
4.3 IC output voltage range as a function of inputs 33
4.4 Illustrative example of a sequencing graph for an IC 35
4.5 Finding a path through the state table. 39
4.6 First lines of the generated power sequence 41
4.7 Histograms of solving times for problems P1, P2, and P3. 43

5.1 Update regulator model. 54
5.2 Scaling behavior of sequence generation time 59

6.1 The I2C stack . 66
6.2 Timing diagram of a 1-byte read at a given EEPROM offset . . . 69
6.3 Efeu workflow. 71
6.4 ESI for controller Transaction and EepDriver layers 72
6.5 Examples of call graphs. 75
6.6 Transforming a talk into a function call or a continuation . . . 76
6.7 Multiple hardware/software boundaries 79
6.8 Architecture of the Byte verifier. 81
6.9 Verification runtime of multiple EEPROMs 86
6.10 Achievable bandwidth and CPU usage 92

127

List of Figures

6.11 Waveforms of the first few SCL cycles 93
6.12 LUT utilization. 94
6.13 FF utilization. 95

7.1 Trustworthy BMC architecture 110

8.1 Using the Enzian BMC to measure power consumption 120

128

List of Tables

4.1 An overview of problem instances P1 to P3 44
4.2 Overview of problem instances P1 to P6 46
4.3 Measurements for P1 to P6 . 46

6.1 Source code lines of layers . 84
6.2 Average verification runtime in seconds 85
6.3 Source code lines for MMIO-AXI Lite interfaces 89

129

List of Acronyms

ACPI Advanced Configuration and Power Interface
AGESA AMD Generic Encapsulated Software Architec-

ture
AST abstract syntax tree
ATF Arm Trusted Firmware

BMC Baseboard Management Controller

CAD computer-aided design
CPLD complex programmable logic device

CPU central processing unit

DDR Double Data Rate
DFS depth-first search

DMA direct memory access
DoS denial of service

DRAC Dell Remote Access Controller
DRAM Dynamic Random Access Memory

DSL domain specific language
DVFS dynamic voltage and frequency scaling

ECAM Enhanced Configuration Access Mechanism
EDA electronic design automation

EFRI Enzian Firmware Resource Interface

FF flip-flop
FPGA Field Programmable Gate Array

FSM finite state machine

131

List of Acronyms

GPU graphics processing unit

I2C Inter-Integrated Circuit
iLO Integrated Lights-Out
IoT internet of things

IPMI Intelligent Platform Management Interface

LUT look-up table

MCTP Management Component Transport Protocol
MMU memory management unit

NIST National Institute of Standards and Technology

ODM original design manufacturer
OS operating system

PCB printed circuit board
PCIe PCI Express

PLDM Platform Level Data Model
PMBus Power Management Bus

QoS quality of service

REST representational state transfer
RoT root of trust

SCL serial clock line
SDA serial data line
SMT satisfiability modulo theories
SoC system-on-chip
SoM system-on-module
SSA static single-assignment

132

List of Acronyms

TCB trusted compute base
TDP thermal design power

UIO userspace I/O
USB Universal Serial Bus

XCC xClarity Controller
XSS cross-site scripting

133

Bibliography

[1] 24AA512/24LC512/24FC512 512K I2C Serial EEPROM. English. Version 1.0. Mi-
crochip. 2021. 45 pp. (cit. on pp. 70, 88).

[2] Advanced Micro Devices. AMD Generic Encapsulated Software Architecture (AGESA)

Interface Specification for Arch2008. Version 3.04. Jan. 2017 (cit. on p. 1).

[3] Advanced Micro Devices. Zynq UltraScale+ MPSoC Data Sheet: Overview (DS891). en.
v1.10. Nov. 2022. url: https://www.amd.com/content/dam/xilinx/support/
documents/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf (cit. on
pp. 9, 96).

[4] Advanced Micro Devices. Zynq-7000 SoC Data Sheet: Overview (DS190). en. v1.11.1.
July 2018. url: https://www.amd.com/content/dam/xilinx/support/document
s/data_sheets/ds190-Zynq-7000-Overview.pdf (cit. on p. 7).

[5] Aldo Aguilar-Nadalini, Kuk H Chung, Cecilia Marsicovetere, Juan F Medrano, Emilio
Miranda, Víctor Ayerdi, and Luis Zea. “Design and On-Orbit Performance of the Electrical
Power System for the Quetzal-1 CubeSat”. In: Journal of Small Satellites 12.2 (May 2023),
pp. 1201–1229 (cit. on p. 66).

[6] Amina Albalooshi, Abdul-Halim M. Jallad, and Prashanth R. Marpu. “Fault Analysis and
Mitigation Techniques of the I2C Bus for Nanosatellite Missions”. In: IEEE Access 11
(2023), pp. 34709–34717. issn: 2169-3536. doi: 10.1109/ACCESS.2023.3262410.
url: https://ieeexplore.ieee.org/document/10082916/ (cit. on p. 67).

[7] Vadim Alimguzhin, Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. “On
Model Based Synthesis of Embedded Control Software”. In: Proceedings of the Tenth

ACM International Conference on Embedded Software. EMSOFT ’12. New York, NY,
USA: Association for Computing Machinery, Oct. 2012, pp. 227–236. isbn: 978-1-4503-
1425-1. doi: 10.1145/2380356.2380398. url: https://doi.org/10.1145/
2380356.2380398 (cit. on p. 49).

[8] Thomas Alsop. Server Vendor Market Share by Quarter 2021. Nov. 2023. url: https:
//www.statista.com/statistics/269396/global-market-share-held-by-

server- system- vendors- since- 1st- quarter- 2009/ (visited on 10/03/2024)
(cit. on p. 10).

[9] Altera Corporation. Enpirion Power Datasheet ES1020QI Power Sequencing Controller.
2014. url: https://eu.mouser.com/datasheet/2/612/es1020qi_10041-
1299392.pdf (cit. on p. 29).

135

https://www.amd.com/content/dam/xilinx/support/documents/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.amd.com/content/dam/xilinx/support/documents/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.amd.com/content/dam/xilinx/support/documents/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.amd.com/content/dam/xilinx/support/documents/data_sheets/ds190-Zynq-7000-Overview.pdf
https://doi.org/10.1109/ACCESS.2023.3262410
https://ieeexplore.ieee.org/document/10082916/
https://doi.org/10.1145/2380356.2380398
https://doi.org/10.1145/2380356.2380398
https://doi.org/10.1145/2380356.2380398
https://www.statista.com/statistics/269396/global-market-share-held-by-server-system-vendors-since-1st-quarter-2009/
https://www.statista.com/statistics/269396/global-market-share-held-by-server-system-vendors-since-1st-quarter-2009/
https://www.statista.com/statistics/269396/global-market-share-held-by-server-system-vendors-since-1st-quarter-2009/
https://eu.mouser.com/datasheet/2/612/es1020qi_10041-1299392.pdf
https://eu.mouser.com/datasheet/2/612/es1020qi_10041-1299392.pdf

Bibliography

[10] AMI. AMI Announces OpenBMC-Based MegaRAC OSP BMC Firmware Solution for

Robust, Secure Remote Server Management. Oct. 2020. url: https : / / www . ami .
com/blog/2020/10/01/ami- announces- openbmcbased- megarac- osp- bmc-

firmware-solution-for-robust-secure-remote-server-management/ (cit. on
p. 10).

[11] AMI. MegaRAC. url: https://www.ami.com/megarac/ (visited on 10/22/2024)
(cit. on p. 10).

[12] Arm Limited. Arm Base Boot Requirements. Version Revision 2.1. Apr. 2024 (cit. on p. 1).

[13] Arm Limited. Arm Power State Coordination Interface. Version D. Apr. 2017 (cit. on
p. 1).

[14] Arm Limited. Learn the architecture - An introduction to AMBA AXI. English. Version 3.0.
2022. 62 pp. (cit. on p. 77).

[15] Arm Limited. Power Control System Architecture. Version D. Feb. 2023 (cit. on p. 1).

[16] gRPC Authors. gRPC. 2024. url: https://grpc.io/ (visited on 11/01/2024) (cit. on
p. 11).

[17] AWS. The Security Design of the AWS Nitro System - AWS Whitepaper. Nov. 2022 (cit. on
p. 103).

[18] Vlad Babkin. Supply Chain Vulnerabilities Put Server Ecosystem At Risk. Dec. 2022. url:
https://eclypsium.com/blog/supply-chain-vulnerabilities-put-server-

ecosystem-at-risk/ (visited on 10/03/2024) (cit. on pp. 10, 17).

[19] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. “A Decade of Software Model
Checking with SLAM”. In: Communications of the ACM 54.7 (July 2011), pp. 68–76.
issn: 0001-0782. doi: 10.1145/1965724.1965743. url: https://dl.acm.org/doi/
10.1145/1965724.1965743 (cit. on p. 98).

[20] L. Benini, A. Bogliolo, and G. De Micheli. “A Survey of Design Techniques for System-
Level Dynamic Power Management”. In: IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems 8.3 (June 2000), pp. 299–316. issn: 1557-9999. doi: 10.1109/92.
845896 (cit. on p. 49).

[21] Anthony J. Bonkoski, Russ Bielawski, and J. Alex Halderman. “Illuminating the Security
Issues Surrounding Lights-out Server Management”. In: Proceedings of the 7th USENIX

Conference on Offensive Technologies. WOOT ’13. USA: USENIX Association, Aug.
2013, p. 10 (cit. on pp. 2, 11, 117).

[22] Dragan Bošnački, Aad Mathĳssen, and Yaroslav S. Usenko. “Behavioural Analysis of an
I2C Linux Driver”. In: Formal Methods for Industrial Critical Systems. Ed. by María
Alpuente, Byron Cook, and Christophe Joubert. Berlin, Heidelberg: Springer, 2009,
pp. 205–206. isbn: 978-3-642-04570-7. doi: 10.1007/978- 3- 642- 04570- 7_18
(cit. on p. 98).

136

https://www.ami.com/blog/2020/10/01/ami-announces-openbmcbased-megarac-osp-bmc-firmware-solution-for-robust-secure-remote-server-management/
https://www.ami.com/blog/2020/10/01/ami-announces-openbmcbased-megarac-osp-bmc-firmware-solution-for-robust-secure-remote-server-management/
https://www.ami.com/blog/2020/10/01/ami-announces-openbmcbased-megarac-osp-bmc-firmware-solution-for-robust-secure-remote-server-management/
https://www.ami.com/megarac/
https://grpc.io/
https://eclypsium.com/blog/supply-chain-vulnerabilities-put-server-ecosystem-at-risk/
https://eclypsium.com/blog/supply-chain-vulnerabilities-put-server-ecosystem-at-risk/
https://doi.org/10.1145/1965724.1965743
https://dl.acm.org/doi/10.1145/1965724.1965743
https://dl.acm.org/doi/10.1145/1965724.1965743
https://doi.org/10.1109/92.845896
https://doi.org/10.1109/92.845896
https://doi.org/10.1007/978-3-642-04570-7_18

Bibliography

[23] Jasper Bouwmeester, Martin Langer, and Eberhard Gill. “Survey on the Implementation
and Reliability of CubeSat Electrical Bus Interfaces”. In: CEAS Space Journal 9.2 (June
2017), pp. 163–173. issn: 1868-2510. doi: 10.1007/s12567- 016- 0138- 0. url:
https://doi.org/10.1007/s12567-016-0138-0 (cit. on p. 66).

[24] Richard Braun, Abishek Ramdas, Michal Friedman, and Gustavo Alonso. “PLayer: Ex-
panding Coherence Protocol Stack with a Persistence Layer”. In: Proceedings of the 1st

Workshop on Disruptive Memory Systems. DIMES ’23. New York, NY, USA: Association
for Computing Machinery, Oct. 2023, pp. 8–15. isbn: 9798400703003. doi: 10.1145/
3609308.3625270. url: https://dl.acm.org/doi/10.1145/3609308.3625270
(visited on 10/24/2024) (cit. on p. 110).

[25] Matthias Brun, Reto Achermann, Tej Chajed, Jon Howell, Gerd Zellweger, and Andrea
Lattuada. “Beyond Isolation: OS Verification as a Foundation for Correct Applications”.
In: Proceedings of the 19th Workshop on Hot Topics in Operating Systems. HotOS ’23.
New York, NY, USA: Association for Computing Machinery, June 2023, pp. 158–165.
isbn: 9798400701955. doi: 10.1145/3593856.3595899. url: https://dl.acm.
org/doi/10.1145/3593856.3595899 (visited on 10/22/2024) (cit. on p. 106).

[26] Thomas Burd, Noah Beck, Sean White, Milam Paraschou, Nathan Kalyanasundharam,
Gregg Donley, Alan Smith, Larry Hewitt, and Samuel Naffziger. ““Zeppelin”: An SoC
for Multichip Architectures”. In: IEEE Journal of Solid-State Circuits 54.1 (Jan. 2019),
pp. 133–143. issn: 1558-173X. doi: 10.1109/JSSC.2018.2873584. url: https:
//ieeexplore.ieee.org/document/8510845 (cit. on pp. 1, 27).

[27] Bryan Cantrill. I Have Come to Bury the BIOS, Not to Open It: The Need for Holistic

Systems. Sept. 2022. url: https://osfc.io/2022/talks/i-have-come-to-bury-
the-bios-not-to-open-it-the-need-for-holistic-systems/ (visited on
10/21/2024) (cit. on pp. 105, 121).

[28] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu.
“Toward Compositional Verification of Interruptible OS Kernels and Device Drivers”. In:
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design

and Implementation. PLDI ’16. New York, NY, USA: Association for Computing Ma-
chinery, June 2016, pp. 431–447. isbn: 978-1-4503-4261-2. doi: 10.1145/2908080.
2908101. url: https://dl.acm.org/doi/10.1145/2908080.2908101 (cit. on
p. 99).

[29] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M. Frans
Kaashoek. “Linux Kernel Vulnerabilities: State-of-the-Art Defenses and Open Problems”.
In: Proceedings of the Second Asia-Pacific Workshop on Systems. APSys ’11. Shanghai,
China: Association for Computing Machinery, July 2011, pp. 1–5. isbn: 978-1-4503-1179-
3. doi: 10.1145/2103799.2103805. url: https://doi.org/10.1145/2103799.
2103805 (visited on 07/29/2020) (cit. on p. 18).

137

https://doi.org/10.1007/s12567-016-0138-0
https://doi.org/10.1007/s12567-016-0138-0
https://doi.org/10.1145/3609308.3625270
https://doi.org/10.1145/3609308.3625270
https://dl.acm.org/doi/10.1145/3609308.3625270
https://doi.org/10.1145/3593856.3595899
https://dl.acm.org/doi/10.1145/3593856.3595899
https://dl.acm.org/doi/10.1145/3593856.3595899
https://doi.org/10.1109/JSSC.2018.2873584
https://ieeexplore.ieee.org/document/8510845
https://ieeexplore.ieee.org/document/8510845
https://osfc.io/2022/talks/i-have-come-to-bury-the-bios-not-to-open-it-the-need-for-holistic-systems/
https://osfc.io/2022/talks/i-have-come-to-bury-the-bios-not-to-open-it-the-need-for-holistic-systems/
https://doi.org/10.1145/2908080.2908101
https://doi.org/10.1145/2908080.2908101
https://dl.acm.org/doi/10.1145/2908080.2908101
https://doi.org/10.1145/2103799.2103805
https://doi.org/10.1145/2103799.2103805
https://doi.org/10.1145/2103799.2103805

Bibliography

[30] Zitai Chen and David Oswald. “PMFault: Faulting and Bricking Server CPUs through
Management Interfaces: Or: A Modern Example of Halt and Catch Fire”. In: IACR

Transactions on Cryptographic Hardware and Embedded Systems 2023 (2 Mar. 2023),
pp. 1–23. issn: 2569-2925. doi: 10.46586/tches.v2023.i2.1- 23. url: https:
//tches.iacr.org/index.php/TCHES/article/view/10275 (cit. on pp. 25, 66).

[31] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. “An
Empirical Study of Operating Systems Errors”. In: ACM SIGOPS Operating Systems

Review 35.5 (Oct. 2001), pp. 73–88. issn: 0163-5980. doi: 10.1145/502059.502042.
url: https://dl.acm.org/doi/10.1145/502059.502042 (cit. on pp. 48, 65, 98).

[32] Pai Chou, Ross Ortega, and Gaetano Borriello. “Synthesis of the Hardware/Software In-
terface in Microcontroller-Based Systems”. In: 1992 IEEE/ACM International Conference

on Computer-Aided Design. USA: IEEE Computer Society, Nov. 1992, pp. 488–495. doi:
10.1109/ICCAD.1992.279322. url: https://ieeexplore.ieee.org/document/
279322 (cit. on p. 97).

[33] Pai Chou, Ross B. Ortega, and Gaetano Borriello. “Interface Co-Synthesis Techniques for
Embedded Systems”. In: Proceedings of the 1995 IEEE/ACM International Conference on

Computer-aided Design. ICCAD ’95. USA: IEEE Computer Society, Dec. 1995, pp. 280–
287. isbn: 978-0-8186-7213-2 (cit. on p. 97).

[34] Pai H. Chou, Ross B. Ortega, and Gaetano Borriello. “The Chinook Hardware/Software
Co-Synthesis System”. In: Proceedings of the 8th International Symposium on System

Synthesis. ISSS ’95. New York, NY, USA: Association for Computing Machinery, Sept.
1995, pp. 22–27. isbn: 978-0-89791-771-1. doi: 10.1145/224486.224491. url: http
s://dl.acm.org/doi/10.1145/224486.224491 (cit. on pp. 68, 97).

[35] Clang Team. Clang: C Language Family Frontend for LLVM. 2024. url: https://
clang.llvm.org/ (visited on 05/21/2024) (cit. on p. 74).

[36] Clang Team. Clang: Clang::DiagnosticsEngine Class Reference. 2024. url: https:
//clang.llvm.org/doxygen/classclang%5C_1%5C_1DiagnosticsEngine.html

(visited on 05/21/2024) (cit. on p. 74).

[37] Clang Team. Clang: Clang::Rewriter Class Reference. 2024. url: https://clang.
llvm.org/doxygen/classclang_1_1Rewriter.html (visited on 05/21/2024) (cit.
on p. 76).

[38] Clang Team. ClangFormat. 2024. url: https://clang.llvm.org/docs/ClangForm
at.html (visited on 05/06/2024) (cit. on pp. 83, 88).

[39] David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino, Adam Turowski, Zhen-
hao He, Nora Hossle, Dario Korolĳa, Melissa Licciardello, Kristina Martsenko, Reto
Achermann, Gustavo Alonso, and Timothy Roscoe. “Enzian: An Open, General, CPU/F-
PGA Platform for Systems Software Research”. In: Proceedings of the 27th ACM Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems. ASPLOS 2022. Lausanne, Switzerland: Association for Computing Machinery,
Mar. 2022, pp. 434–451. isbn: 9781450392051. doi: 10.1145/3503222.3507742. url:
https://doi.org/10.1145/3503222.3507742 (cit. on pp. 3, 5, 7, 9, 29).

138

https://doi.org/10.46586/tches.v2023.i2.1-23
https://tches.iacr.org/index.php/TCHES/article/view/10275
https://tches.iacr.org/index.php/TCHES/article/view/10275
https://doi.org/10.1145/502059.502042
https://dl.acm.org/doi/10.1145/502059.502042
https://doi.org/10.1109/ICCAD.1992.279322
https://ieeexplore.ieee.org/document/279322
https://ieeexplore.ieee.org/document/279322
https://doi.org/10.1145/224486.224491
https://dl.acm.org/doi/10.1145/224486.224491
https://dl.acm.org/doi/10.1145/224486.224491
https://clang.llvm.org/
https://clang.llvm.org/
https://clang.llvm.org/doxygen/classclang%5C_1%5C_1DiagnosticsEngine.html
https://clang.llvm.org/doxygen/classclang%5C_1%5C_1DiagnosticsEngine.html
https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html
https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/docs/ClangFormat.html
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1145/3503222.3507742

Bibliography

[40] Darren Cofer, Andrew Gacek, John Backes, Michael W. Whalen, Lee Pike, Adam Foltzer,
Michal Podhradsky, Gerwin Klein, Ihor Kuz, June Andronick, Gernot Heiser, and Douglas
Stuart. “A Formal Approach to Constructing Secure Air Vehicle Software”. In: Computer

51.11 (Nov. 2018), pp. 14–23. issn: 1558-0814. doi: 10.1109/MC.2018.2876051 (cit.
on pp. 106, 110, 115).

[41] LLVM development community. LLVM Language Reference Manual. 2024. url: https:
//llvm.org/docs/LangRef.html (visited on 05/21/2024) (cit. on p. 76).

[42] Oxide Computer Company. Introduction / Guides. Sept. 2024. url: https://docs.
oxide.computer/guides/introduction (visited on 10/21/2024) (cit. on p. 104).

[43] Oxide Computer Company. Networking / Guides. Sept. 2024. url: https://docs.
oxide.computer/guides/architecture/networking (visited on 10/21/2024) (cit.
on p. 104).

[44] Christopher L. Conway and Stephen A. Edwards. “NDL: A Domain-Specific Language
for Device Drivers”. In: ACM SIGPLAN Notices 39.7 (June 2004), pp. 30–36. issn: 0362-
1340. doi: 10.1145/998300.997169. url: https://dl.acm.org/doi/10.1145/
998300.997169 (cit. on p. 98).

[45] Nuvoton Technology Corporation. iBMC. 2024. url: https://www.nuvoton.com/
products/cloud-computing/ibmc (visited on 10/22/2024) (cit. on p. 9).

[46] CVE Project. CVE-2013-4783. July 2013. url: https://nvd.nist.gov/vuln/
detail/CVE-2013-4783 (visited on 10/29/2024) (cit. on p. 17).

[47] CVE Project. CVE-2019-4169. Jan. 2019. url: https://nvd.nist.gov/vuln/
detail/CVE-2019-4621 (visited on 10/08/2020) (cit. on p. 2).

[48] CVE Project. CVE-2019-4621. Jan. 2019. url: https://nvd.nist.gov/vuln/
detail/CVE-2019-4621 (visited on 10/08/2020) (cit. on p. 2).

[49] CVE Project. CVE-2019-6260. Jan. 2019. url: https://nvd.nist.gov/vuln/
detail/CVE-2019-6260 (visited on 11/01/2024) (cit. on p. 121).

[50] CVE Project. CVE-2020-14156. June 2020. url: https://nvd.nist.gov/vuln/
detail/CVE-2020-14156 (visited on 10/08/2020) (cit. on p. 2).

[51] CVE Project. CVE-2024-26593. Feb. 2024. url: https://nvd.nist.gov/vuln/
detail/CVE-2024-26593 (visited on 05/05/2024) (cit. on p. 67).

[52] Albert Danial. cloc: v2.00. Version v2.00. Feb. 2024 (cit. on pp. 83, 88).

[53] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le.
“RAPL: Memory Power Estimation and Capping”. In: 2010 ACM/IEEE International

Symposium on Low-Power Electronics and Design (ISLPED). Aug. 2010, pp. 189–194.
doi: 10.1145/1840845.1840883. url: https://ieeexplore.ieee.org/document
/5599016 (visited on 10/30/2024) (cit. on p. 119).

[54] Dell. Integrated Dell Remote Access Controller (iDRAC). url: https://www.dell.
com/en-us/lp/dt/open-manage-idrac (visited on 10/03/2024) (cit. on p. 10).

139

https://doi.org/10.1109/MC.2018.2876051
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://docs.oxide.computer/guides/introduction
https://docs.oxide.computer/guides/introduction
https://docs.oxide.computer/guides/architecture/networking
https://docs.oxide.computer/guides/architecture/networking
https://doi.org/10.1145/998300.997169
https://dl.acm.org/doi/10.1145/998300.997169
https://dl.acm.org/doi/10.1145/998300.997169
https://www.nuvoton.com/products/cloud-computing/ibmc
https://www.nuvoton.com/products/cloud-computing/ibmc
https://nvd.nist.gov/vuln/detail/CVE-2013-4783
https://nvd.nist.gov/vuln/detail/CVE-2013-4783
https://nvd.nist.gov/vuln/detail/CVE-2019-4621
https://nvd.nist.gov/vuln/detail/CVE-2019-4621
https://nvd.nist.gov/vuln/detail/CVE-2019-4621
https://nvd.nist.gov/vuln/detail/CVE-2019-4621
https://nvd.nist.gov/vuln/detail/CVE-2019-6260
https://nvd.nist.gov/vuln/detail/CVE-2019-6260
https://nvd.nist.gov/vuln/detail/CVE-2020-14156
https://nvd.nist.gov/vuln/detail/CVE-2020-14156
https://nvd.nist.gov/vuln/detail/CVE-2024-26593
https://nvd.nist.gov/vuln/detail/CVE-2024-26593
https://doi.org/10.1145/1840845.1840883
https://ieeexplore.ieee.org/document/5599016
https://ieeexplore.ieee.org/document/5599016
https://www.dell.com/en-us/lp/dt/open-manage-idrac
https://www.dell.com/en-us/lp/dt/open-manage-idrac

Bibliography

[55] devicetree.org. Devicetree Specification. Version v0.3. Feb. 2020. url: https://githu
b.com/devicetree-org/devicetree-specification/releases/download/v0.

3/devicetree-specification-changebars-v0.3.pdf (cit. on pp. 50, 117).

[56] DMTF. Management Component Transport Protocol (MCTP) Base Specification. Ver-
sion 1.3.0. Nov. 2016 (cit. on p. 117).

[57] DMTF. Platform Level Data Model (PLDM) Base Specification. Version 1.0.0. Apr. 2009
(cit. on p. 117).

[58] DMTF. Redfish specification. Aug. 2024. url: https://www.dmtf.org/sites/defa
ult/files/standards/documents/DSP0266_1.21.0.pdf (visited on 10/22/2024)
(cit. on pp. 11, 117).

[59] Krzysztof Domanski. “Latch-up in FinFET Technologies”. In: 2018 IEEE International

Reliability Physics Symposium (IRPS). Mar. 2018, pp. 2C.4-1-2C.4–5. doi: 10.1109/
IRPS.2018.8353550. url: https://ieeexplore.ieee.org/document/8353550
(cit. on p. 27).

[60] Marvin Drees. u-bmc, The Next Gen BMC Software Stack Born from the u-root Ecosystem.
Nov. 2021. url: https://talks.osfc.io/osfc2021/talk/MA7KHW/ (cit. on p. 11).

[61] Eclypsium. Virtual Media Vulnerability in BMC Opens Servers to Remote Attack. Sept.
2019. url: https://eclypsium.com/blog/virtual-media-vulnerability-in-
bmc-opens-servers-to-remote-attack/ (visited on 08/22/2024) (cit. on p. 17).

[62] Enzian Team. The Enzian Research Computer; Schematics. Version 1.5c. Apr. 2022. doi:
10.5281/zenodo.6465908. url: https://doi.org/10.5281/zenodo.6465908
(cit. on p. 11).

[63] Shuying Fan and Supriya Velagapudi. Implementing Next-Generation Data Center Plat-

form Management Using Agilex 3 and Agilex 5 Devices. Intel Corp., Sept. 2023. url:
https://www.intel.com/content/www/us/en/content- details/787067/

implementing - next - generation - data - center - platform - management -

using-agilex-5-devices.html (visited on 05/21/2024) (cit. on p. 67).

[64] Tian Fang. Introducing “OpenBMC": an open software framework for next-generation

system management. Engineering at Meta, 2015. url: https://engineering.fb.
com/open- source/introducing- openbmc- an- open- software- framework-

for-next-generation-system-management/ (visited on 10/03/2024) (cit. on pp. 2,
10).

[65] Ben Fiedler, Daniel Schwyn, Constantin Gierczak–Galle, David Cock, and Timothy
Roscoe. “Putting out the hardware dumpster fire”. In: Proceedings of the Workshop

on Hot Topics in Operating Systems. HotOS ’23. Providence, Rhode Island: Associa-
tion for Computing Machinery, June 2023, pp. 159–166. isbn: 9798400701955. doi:
10.1145/3593856.3595903. url: https://doi.org/10.1145/3593856.3595903
(cit. on pp. 1, 65, 121).

[66] Linux Foundation. The Yocto Project. url: https://www.yoctoproject.org/ (visited
on 10/08/2024) (cit. on p. 11).

140

https://github.com/devicetree-org/devicetree-specification/releases/download/v0.3/devicetree-specification-changebars-v0.3.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.3/devicetree-specification-changebars-v0.3.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.3/devicetree-specification-changebars-v0.3.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.21.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.21.0.pdf
https://doi.org/10.1109/IRPS.2018.8353550
https://doi.org/10.1109/IRPS.2018.8353550
https://ieeexplore.ieee.org/document/8353550
https://talks.osfc.io/osfc2021/talk/MA7KHW/
https://eclypsium.com/blog/virtual-media-vulnerability-in-bmc-opens-servers-to-remote-attack/
https://eclypsium.com/blog/virtual-media-vulnerability-in-bmc-opens-servers-to-remote-attack/
https://doi.org/10.5281/zenodo.6465908
https://doi.org/10.5281/zenodo.6465908
https://www.intel.com/content/www/us/en/content-details/787067/implementing-next-generation-data-center-platform-management-using-agilex-5-devices.html
https://www.intel.com/content/www/us/en/content-details/787067/implementing-next-generation-data-center-platform-management-using-agilex-5-devices.html
https://www.intel.com/content/www/us/en/content-details/787067/implementing-next-generation-data-center-platform-management-using-agilex-5-devices.html
https://engineering.fb.com/open-source/introducing-openbmc-an-open-software-framework-for-next-generation-system-management/
https://engineering.fb.com/open-source/introducing-openbmc-an-open-software-framework-for-next-generation-system-management/
https://engineering.fb.com/open-source/introducing-openbmc-an-open-software-framework-for-next-generation-system-management/
https://doi.org/10.1145/3593856.3595903
https://doi.org/10.1145/3593856.3595903
https://www.yoctoproject.org/

Bibliography

[67] Jessie Frazelle. “Open Source Firmware”. In: Commun. ACM 62.10 (Sept. 2019), pp. 34–
38. issn: 0001-0782. doi: 10.1145/3343042. url: https://doi.org/10.1145/
3343042 (cit. on p. 2).

[68] Jessie Frazelle. “Opening up the Baseboard Management Controller”. In: Commun. ACM

63.2 (Jan. 2020), pp. 38–40. issn: 0001-0782. doi: 10.1145/3369758. url: https:
//doi.org/10.1145/3369758 (cit. on pp. 2, 9, 10, 17).

[69] A. Ganapathi, Vĳi Ganapathi, and D. Patterson. “Windows XP Kernel Crash Analysis”. In:
LiSA. Berkeley, CA, USA: USENIX Association, Dec. 2006, pp. 149–159. url: https:
//www.usenix.org/legacy/events/lisa06/tech/ganapathi.html (cit. on
p. 65).

[70] Gernot Heiser. Lions OS: Secure, Fast, Adaptable! Oct. 2024. url: https://www.
youtube.com/watch?v=W8Ka_8kHTj4 (visited on 10/24/2024) (cit. on p. 109).

[71] Saugata Ghose, Abdullah Giray Yaglikçi, Raghav Gupta, Donghyuk Lee, Kais Kudrolli,
William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal,
Mike O’Connor, and Onur Mutlu. “What Your DRAM Power Models Are Not Telling
You: Lessons from a Detailed Experimental Study”. In: Proceedings of the ACM on

Measurement and Analysis of Computing Systems 2.3 (Dec. 2018), 38:1–38:41. doi: 10.
1145/3224419. url: https://doi.org/10.1145/3224419 (visited on 05/20/2021)
(cit. on p. 119).

[72] Michael Giardino, Eric Klawitter, Bonnie Ferri, and Aldo Ferri. “A Power- and Perfor-
mance-Aware Software Framework for Control System Applications”. In: IEEE Transac-

tions on Computers 69.10 (Oct. 2020), pp. 1544–1555. issn: 1557-9956. doi: 10.1109/
TC.2020.2978468. url: https://ieeexplore.ieee.org/document/9025173
(cit. on pp. 49, 121).

[73] Michael Giardino, Daniel Schwyn, Bonnie Ferri, and Aldo Ferri. “Low-Overhead Re-
inforcement Learning-Based Power Management Using 2QoSM”. In: Journal of Low

Power Electronics and Applications 12.2 (May 2022). issn: 2079-9268. doi: 10.3390/
jlpea12020029. url: https://www.mdpi.com/2079-9268/12/2/29 (cit. on p. 121).

[74] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm
Sjöberg, and David Costanzo. “CertiKOS: An Extensible Architecture for Building Cer-
tified Concurrent OS Kernels”. In: 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16). 2016, pp. 653–669. isbn: 978-1-931971-33-1.
url: https://www.usenix.org/conference/osdi16/technical- sessions/
presentation/gu (visited on 10/15/2024) (cit. on p. 106).

[75] R.K. Gupta, S. Irani, and S.K. Shukla. “Formal Methods for Dynamic Power Manage-
ment”. In: ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat.

No. 03CH37486). Nov. 2003, pp. 874–881. doi: 10.1109/ICCAD.2003.159778. url:
https://ieeexplore.ieee.org/document/1257911 (cit. on p. 49).

141

https://doi.org/10.1145/3343042
https://doi.org/10.1145/3343042
https://doi.org/10.1145/3343042
https://doi.org/10.1145/3369758
https://doi.org/10.1145/3369758
https://doi.org/10.1145/3369758
https://www.usenix.org/legacy/events/lisa06/tech/ganapathi.html
https://www.usenix.org/legacy/events/lisa06/tech/ganapathi.html
https://www.youtube.com/watch?v=W8Ka_8kHTj4
https://www.youtube.com/watch?v=W8Ka_8kHTj4
https://doi.org/10.1145/3224419
https://doi.org/10.1145/3224419
https://doi.org/10.1145/3224419
https://doi.org/10.1109/TC.2020.2978468
https://doi.org/10.1109/TC.2020.2978468
https://ieeexplore.ieee.org/document/9025173
https://doi.org/10.3390/jlpea12020029
https://doi.org/10.3390/jlpea12020029
https://www.mdpi.com/2079-9268/12/2/29
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1109/ICCAD.2003.159778
https://ieeexplore.ieee.org/document/1257911

Bibliography

[76] Royal Hansen and Dominic Rizzo. OpenTitan - Open Sourcing Transparent, Trustworthy,

and Secure Silicon. Nov. 2019. url: https://security.googleblog.com/2019/
11/opentitan-open-sourcing-transparent.html (visited on 10/18/2024) (cit. on
p. 103).

[77] Jeff Heath and Akin Kestelli. Flexible Power Supply Sequencing and Monitoring. Analog
Devices, 2005. url: https://www.analog.com/en/technical-articles/flexib
le-power-supply-sequencing-monitoring.html (visited on 10/03/2024) (cit. on
p. 29).

[78] Cedric Heimhofer. “Towards high-assurance Board Management Controller software”.
Master’s Thesis. ETH Zurich, Mar. 2021. doi: 10.3929/ethz- b- 000490635. url:
https://doi.org/10.3929/ethz-b-000490635 (cit. on p. 6).

[79] Gernot Heiser. The seL4 Microkernel – An Introduction. May 2024. url: https://sel4.
systems/About/seL4-whitepaper.pdf (visited on 10/24/2024) (cit. on pp. 109, 113).

[80] Gernot Heiser, Lucy Parker, Peter Chubb, Ivan Velickovic, and Ben Leslie. “Can We Put the
“S” Into IoT?” In: 2022 IEEE 8th World Forum on Internet of Things (WF-IoT). New York,
NY, USA: IEEE, Oct. 2022, pp. 1–6. doi: 10.1109/WF-IoT54382.2022.10152198.
url: https://ieeexplore.ieee.org/document/10152198 (cit. on pp. 78, 109,
115).

[81] G.J. Holzmann. “The Model Checker SPIN”. In: IEEE Transactions on Software Engi-

neering 23.5 (May 1997), pp. 279–295. issn: 1939-3520. doi: 10.1109/32.588521.
url: https://ieeexplore.ieee.org/document/588521 (cit. on p. 64).

[82] Gerard J. Holzmann. “Logic Verification of ANSI-C Code with SPIN”. en. In: SPIN Model

Checking and Software Verification. Ed. by Klaus Havelund, John Penix, and Willem
Visser. Berlin, Heidelberg: Springer, 2000, pp. 131–147. isbn: 978-3-540-45297-3. doi:
10.1007/10722468_8 (cit. on p. 73).

[83] HPE. Integrated Lights-Out (iLO). url: https://www.hpe.com/us/en/hpe-integr
ated-lights-out-ilo.html (visited on 10/30/2024) (cit. on p. 10).

[84] HPE. OpenBMC Enablement on HPE ProLiant Servers. 2024. url: https://www.hpe.
com/us/en/compute/openbmc-proliant-servers.html (cit. on p. 10).

[85] Jingmei Hu, Eric Lu, David A. Holland, Ming Kawaguchi, Stephen Chong, and Margo I.
Seltzer. “Trials and Tribulations in Synthesizing Operating Systems”. In: Proceedings of

the 10th Workshop on Programming Languages and Operating Systems. PLOS’19. New
York, NY, USA: Association for Computing Machinery, Oct. 2019, pp. 67–73. isbn: 978-
1-4503-7017-2. doi: 10.1145/3365137.3365401. url: https://doi.org/10.1145/
3365137.3365401 (cit. on p. 49).

142

https://security.googleblog.com/2019/11/opentitan-open-sourcing-transparent.html
https://security.googleblog.com/2019/11/opentitan-open-sourcing-transparent.html
https://www.analog.com/en/technical-articles/flexible-power-supply-sequencing-monitoring.html
https://www.analog.com/en/technical-articles/flexible-power-supply-sequencing-monitoring.html
https://doi.org/10.3929/ethz-b-000490635
https://doi.org/10.3929/ethz-b-000490635
https://sel4.systems/About/seL4-whitepaper.pdf
https://sel4.systems/About/seL4-whitepaper.pdf
https://doi.org/10.1109/WF-IoT54382.2022.10152198
https://ieeexplore.ieee.org/document/10152198
https://doi.org/10.1109/32.588521
https://ieeexplore.ieee.org/document/588521
https://doi.org/10.1007/10722468_8
https://www.hpe.com/us/en/hpe-integrated-lights-out-ilo.html
https://www.hpe.com/us/en/hpe-integrated-lights-out-ilo.html
https://www.hpe.com/us/en/compute/openbmc-proliant-servers.html
https://www.hpe.com/us/en/compute/openbmc-proliant-servers.html
https://doi.org/10.1145/3365137.3365401
https://doi.org/10.1145/3365137.3365401
https://doi.org/10.1145/3365137.3365401

Bibliography

[86] Lukas Humbel, Daniel Schwyn, Nora Hossle, Roni Haecki, Melissa Licciardello, Jan
Schaer, David Cock, Michael Giardino, and Timothy Roscoe. “A Model-Checked I2C
Specification”. In: 27th International Symposium on Model Checking Software (SPIN

2021). Ed. by Alfons Laarman and Ana Sokolova. Cham: Springer International Publish-
ing, Aug. 2021, pp. 177–193. isbn: 978-3-030-84629-9. doi: 10.1007/978-3-030-
84629-9_10. url: https://doi.org/10.1007/978-3-030-84629-9_10 (cit. on
pp. 64, 70, 81, 82).

[87] Giang Nguyen Thi Huong. “GCC2Verilog Compiler Toolset for Complete Translation of
C Programming Language into Verilog HDL”. en. In: ETRI Journal 33.5 (Oct. 2011),
pp. 731–740. issn: 1225-6463. doi: 10.4218/etrij.11.0110.0654. (Visited on
05/21/2024) (cit. on p. 73).

[88] I2C-bus specification and user manual. English. Version 7.0. NXP Semiconductors. Oct.
2021. 62 pp. (cit. on pp. 66, 68, 89).

[89] ASPEED Technology Inc. ASPEED - Server Management. 2024. url: https://www.
aspeedtech.com/server (visited on 10/22/2024) (cit. on p. 9).

[90] Intel, Hewlett-Packard, NEC, and Dell. Intelligent Platform Management Interface Spec-

ification 2nd Generation. Version 1.1. Oct. 2013. url: https://www.intel.com/
content/dam/www/public/us/en/documents/specification-updates/ipmi-

intelligent-platform-mgt-interface-spec-2nd-gen-v2-0-spec-update.

pdf (visited on 10/22/2024) (cit. on pp. 11, 117).

[91] JEDEC Solid State Technology Association. DDR4 SDRAM. Sept. 2012 (cit. on p. 124).

[92] Ke Jiang. “Model Checking C Programs by Translating C to Promela”. en. MA thesis.
Uppsala, Sweden: Uppsala Universitet, Sept. 2009. url: http://www.diva-portal.
org/smash/get/diva2:235718/FULLTEXT01.pdf (cit. on p. 73).

[93] Asim Kadav and Michael M. Swift. “Understanding Modern Device Drivers”. In: Pro-

ceedings of the Seventeenth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems. ASPLOS XVII. New York, NY, USA: As-
sociation for Computing Machinery, Mar. 2012, pp. 87–98. isbn: 978-1-4503-0759-8. doi:
10.1145/2150976.2150987. url: https://doi.org/10.1145/2150976.2150987
(cit. on p. 48).

[94] kaedros. Raspberry Pi I2C clock-stretching bug GitHub Issue. Feb. 2022. url: https:
//github.com/raspberrypi/linux/issues/4884 (visited on 09/05/2024) (cit. on
p. 68).

[95] Keysight Technologies, Inc. Keysight InfiniiVision 3000T X-Series Oscilloscopes User’s

Guide. en. June 2020. (Visited on 08/08/2023) (cit. on p. 88).

[96] Moonzoo Kim, Yunja Choi, Yunho Kim, and Hotae Kim. “Formal Verification of a Flash
Memory Device Driver – An Experience Report”. In: Model Checking Software. Ed. by
Klaus Havelund, Rupak Majumdar, and Jens Palsberg. Berlin, Heidelberg: Springer, 2008,
pp. 144–159. isbn: 978-3-540-85114-1. doi: 10.1007/978-3-540-85114-1_12 (cit.
on p. 99).

143

https://doi.org/10.1007/978-3-030-84629-9_10
https://doi.org/10.1007/978-3-030-84629-9_10
https://doi.org/10.1007/978-3-030-84629-9_10
https://doi.org/10.4218/etrij.11.0110.0654
https://www.aspeedtech.com/server
https://www.aspeedtech.com/server
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/ipmi-intelligent-platform-mgt-interface-spec-2nd-gen-v2-0-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/ipmi-intelligent-platform-mgt-interface-spec-2nd-gen-v2-0-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/ipmi-intelligent-platform-mgt-interface-spec-2nd-gen-v2-0-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/ipmi-intelligent-platform-mgt-interface-spec-2nd-gen-v2-0-spec-update.pdf
http://www.diva-portal.org/smash/get/diva2:235718/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:235718/FULLTEXT01.pdf
https://doi.org/10.1145/2150976.2150987
https://doi.org/10.1145/2150976.2150987
https://github.com/raspberrypi/linux/issues/4884
https://github.com/raspberrypi/linux/issues/4884
https://doi.org/10.1007/978-3-540-85114-1_12

Bibliography

[97] Myron King, Nirav Dave, and Arvind. “Automatic Generation of Hardware/Software
Interfaces”. In: ACM SIGARCH Computer Architecture News 40.1 (Mar. 2012), pp. 325–
336. issn: 0163-5964. doi: 10.1145/2189750.2151011. url: https://dl.acm.org/
doi/10.1145/2189750.2151011 (cit. on p. 97).

[98] Gerwin Klein. “Operating System Verification—An Overview”. In: Sadhana 34.1 (Feb.
2009), pp. 27–69. issn: 0973-7677. doi: 10.1007/s12046-009-0002-4. url: https:
//doi.org/10.1007/s12046-009-0002-4 (visited on 10/16/2024) (cit. on p. 106).

[99] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. “seL4: Formal Verification of an OS Kernel”.
In: Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles.
SOSP ’09. New York, NY, USA: ACM, 2009, pp. 207–220. isbn: 978-1-60558-752-3.
doi: 10.1145/1629575.1629596. url: http://doi.acm.org/10.1145/1629575.
1629596 (cit. on pp. 78, 99, 102, 106).

[100] Arjen Klomp, Herman Roebbers, Ruud Derwig, and Leon Bouwmeester. “Designing a
Mathematically Verified I2C Device Driver Using ASD”. In: Communicating Process

Architectures 2009. IOS Press, 2009, pp. 105–116. doi: 10.3233/978-1-60750-065-
0-105. url: https://ebooks.iospress.nl/doi/10.3233/978-1-60750-065-0-
105 (cit. on p. 99).

[101] Donald E. Knuth. The Art of Computer Programming: Fundamental Algorithms. 3rd.
Vol. 1. USA: Addison Wesley Longman Publishing Co., Inc., 1997. isbn: 0201896834
(cit. on p. 73).

[102] Hans-Jürgen Koch. Dec. 2006. url: https://www.kernel.org/doc/html/latest/
driver-api/uio-howto.html (visited on 05/21/2014) (cit. on p. 78).

[103] KS0127 Data Sheet. en. Samsung Electronics. Feb. 1998, p. 86. url: https://alltr
ansistors.com/superdatasheets/_pdf/09/ks0127.pdf (visited on 05/11/2024)
(cit. on pp. 67, 85, 87).

[104] KS0127B Data Sheet. en. Samsung Electronics. May 2000, p. 96. url: https://alltr
ansistors.com/superdatasheets/_pdf/09/ks0127b.pdf (visited on 05/11/2024)
(cit. on p. 85).

[105] Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. “Validating High-Level Synthesis”. en.
In: Computer Aided Verification. Ed. by Aarti Gupta and Sharad Malik. Berlin, Heidelberg:
Springer, 2008, pp. 459–472. doi: 10.1007/978-3-540-70545-1_44 (cit. on p. 80).

[106] Ihor Kuz, Yan Liu, Ian Gorton, and Gernot Heiser. “CAmkES: A Component Model for
Secure Microkernel-Based Embedded Systems”. In: Journal of Systems and Software.
Component-Based Software Engineering of Trustworthy Embedded Systems 80.5 (May
2007), pp. 687–699. issn: 0164-1212. doi: 10.1016/j.jss.2006.08.039. url:
https://www.sciencedirect.com/science/article/pii/S016412120600224X

(visited on 10/30/2024) (cit. on p. 115).

144

https://doi.org/10.1145/2189750.2151011
https://dl.acm.org/doi/10.1145/2189750.2151011
https://dl.acm.org/doi/10.1145/2189750.2151011
https://doi.org/10.1007/s12046-009-0002-4
https://doi.org/10.1007/s12046-009-0002-4
https://doi.org/10.1007/s12046-009-0002-4
https://doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
https://doi.org/10.3233/978-1-60750-065-0-105
https://doi.org/10.3233/978-1-60750-065-0-105
https://ebooks.iospress.nl/doi/10.3233/978-1-60750-065-0-105
https://ebooks.iospress.nl/doi/10.3233/978-1-60750-065-0-105
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://alltransistors.com/superdatasheets/_pdf/09/ks0127.pdf
https://alltransistors.com/superdatasheets/_pdf/09/ks0127.pdf
https://alltransistors.com/superdatasheets/_pdf/09/ks0127b.pdf
https://alltransistors.com/superdatasheets/_pdf/09/ks0127b.pdf
https://doi.org/10.1007/978-3-540-70545-1_44
https://doi.org/10.1016/j.jss.2006.08.039
https://www.sciencedirect.com/science/article/pii/S016412120600224X

Bibliography

[107] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”. In: Proceedings of the International Symposium on Code

Generation and Optimization: Feedback-Directed and Runtime Optimization. CGO ’04.
USA: IEEE Computer Society, Mar. 2004, p. 75. isbn: 978-0-7695-2102-2 (cit. on p. 74).

[108] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou,
Jon Howell, Bryan Parno, and Chris Hawblitzel. “Verus: Verifying Rust Programs Using
Linear Ghost Types”. In: Software Artifact (virtual machine, pre-built distributions) for

"Verus: Verifying Rust Programs using Linear Ghost Types" 7.OOPSLA1 (Apr. 2023),
85:286–85:315. doi: 10.1145/3586037. url: https://dl.acm.org/doi/10.1145/
3586037 (visited on 10/22/2024) (cit. on p. 106).

[109] Alessandro Legnani. “Trusted Firmware for a Research Computer”. Bachelor’s Thesis.
ETH Zurich, Aug. 2023. doi: 10.3929/ethz-b-000634201. url: https://doi.org/
10.3929/ethz-b-000634201 (cit. on p. 124).

[110] Lenovo. XClarity Controller. url: https://pubs.lenovo.com/lxcc-overview/
(visited on 10/03/2024) (cit. on p. 10).

[111] Xavier Leroy. “Formal Verification of a Realistic Compiler”. In: Communications of the

ACM 52.7 (July 2009), pp. 107–115. issn: 0001-0782. doi: 10.1145/1538788.1538814.
url: https://dl.acm.org/doi/10.1145/1538788.1538814 (cit. on p. 80).

[112] Alan Leung, Dimitar Bounov, and Sorin Lerner. “C-to-Verilog Translation Validation”. In:
2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign

(MEMOCODE). Sept. 2015, pp. 42–47. doi: 10.1109/MEMCOD.2015.7340466. url:
https://ieeexplore.ieee.org/document/7340466 (cit. on pp. 73, 80).

[113] Corey Lewis. seL4 Multikernel Roadmap and Concurrency Verification. Oct. 2024. url:
https://www.youtube.com/watch?v=8JLKtpB1KPM (visited on 10/24/2024) (cit. on
p. 109).

[114] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. “Formally
Verified Memory Protection for a Commodity Multiprocessor Hypervisor”. In: 30th

USENIX Security Symposium (USENIX Security 21). 2021, pp. 3953–3970. isbn: 978-1-
939133-24-3. url: https://www.usenix.org/conference/usenixsecurity21/
presentation/li-shih-wei (visited on 10/15/2024) (cit. on p. 106).

[115] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. “A Secure and
Formally Verified Linux KVM Hypervisor”. In: 2021 IEEE Symposium on Security and

Privacy (SP). May 2021, pp. 1782–1799. doi: 10.1109/SP40001.2021.00049 (cit. on
p. 106).

[116] Linux development community. Device-Tree bindings for I2C GPIO driver. 2024. url:
https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/

i2c-gpio.txt (visited on 05/12/2024) (cit. on p. 88).

[117] Linux development community. linux/drivers/i2c/busses/i2c-gpio.c at Linux v5.15. 2024.
url: https : // github . com / torvalds/ linux / blob / v5. 15 / drivers / i2c/
busses/i2c-gpio.c (visited on 05/12/2024) (cit. on p. 88).

145

https://doi.org/10.1145/3586037
https://dl.acm.org/doi/10.1145/3586037
https://dl.acm.org/doi/10.1145/3586037
https://doi.org/10.3929/ethz-b-000634201
https://doi.org/10.3929/ethz-b-000634201
https://doi.org/10.3929/ethz-b-000634201
https://pubs.lenovo.com/lxcc-overview/
https://doi.org/10.1145/1538788.1538814
https://dl.acm.org/doi/10.1145/1538788.1538814
https://doi.org/10.1109/MEMCOD.2015.7340466
https://ieeexplore.ieee.org/document/7340466
https://www.youtube.com/watch?v=8JLKtpB1KPM
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://doi.org/10.1109/SP40001.2021.00049
https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/i2c-gpio.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/i2c-gpio.txt
https://github.com/torvalds/linux/blob/v5.15/drivers/i2c/busses/i2c-gpio.c
https://github.com/torvalds/linux/blob/v5.15/drivers/i2c/busses/i2c-gpio.c

Bibliography

[118] Linux development community. linux/drivers/media/i2c/ks0127.c at Linux v5.15. 2024.
url: https://github.com/torvalds/linux/blob/v5.15/drivers/media/i2c/
ks0127.c (visited on 05/08/2024) (cit. on pp. 67, 85, 87).

[119] Linux development community. linux/drivers/pci/quirks.c at Linux v6.9. en. May 2024.
url: https://github.com/torvalds/linux/blob/v6.9/drivers/pci/quirks.
c (visited on 05/08/2024) (cit. on p. 67).

[120] Linux Foundation. OpenBMC. url: https : / / www . openbmc . org/ (visited on
10/03/2024) (cit. on p. 10).

[121] Zikai Liu. “Generating Trustworthy I2C Stacks Across Software and Hardware”. Master’s
Thesis. ETH Zurich, Sept. 2023. doi: 10.3929/ethz- b- 000632755. url: https:
//doi.org/10.3929/ethz-b-000632755 (cit. on pp. 5, 77).

[122] Zikai Liu. “Towards Trustworthy BMC Software with Virtualization on seL4”. Semester
Project. ETH Zurich, Feb. 2023 (cit. on p. 6).

[123] LLVM development community. The LLVM Compiler Infrastructure Project. 2024. url:
https://llvm.org/ (visited on 05/21/2024) (cit. on p. 74).

[124] LogiCORE IP AXI IIC bus interface data sheet. Version v1.02a. Advanced Micro Devices.
July 2012. 38 pp. (cit. on p. 87).

[125] Jiang Long and Robert Brayton. A Simple C to Verilog Compilation Procedure for Hard-

ware/Software Verification. en. 2016 (cit. on p. 73).

[126] Andreas Lööw. “Lutsig: A Verified Verilog Compiler for Verified Circuit Development”.
In: Proceedings of the 10th ACM SIGPLAN International Conference on Certified Pro-

grams and Proofs. CPP 2021. New York, NY, USA: Association for Computing Machinery,
Jan. 2021, pp. 46–60. isbn: 978-1-4503-8299-1. doi: 10.1145/3437992.3439916. url:
https://dl.acm.org/doi/10.1145/3437992.3439916 (cit. on p. 80).

[127] Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. “Scheduling-Context
Capabilities: A Principled, Light-Weight Operating-System Mechanism for Managing
Time”. In: Proceedings of the Thirteenth EuroSys Conference. EuroSys ’18. New York,
NY, USA: Association for Computing Machinery, Apr. 2018, pp. 1–16. isbn: 978-1-
4503-5584-1. doi: 10.1145/3190508.3190539. url: https://doi.org/10.1145/
3190508.3190539 (visited on 10/29/2024) (cit. on p. 114).

[128] Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. “Model-Based Synthesis of
Control Software from System-Level Formal Specifications”. In: ACM Trans. Softw. Eng.

Methodol. 23.1 (Feb. 2014), 6:1–6:42. issn: 1049-331X. doi: 10.1145/2559934. url:
https://doi.org/10.1145/2559934 (cit. on p. 49).

[129] Christopher D. Marlin. Coroutines. Vol. 95. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1980. isbn: 978-3-540-10256-4. doi: 10.1007/3-540-10256-6.
url: http://link.springer.com/10.1007/3-540-10256-6 (cit. on p. 73).

[130] Advamation mechatronic. Raspberry Pi I2C clock-stretching bug. Aug. 2013. url: http:
//www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html (visited on
11/30/2023) (cit. on pp. 67, 87).

146

https://github.com/torvalds/linux/blob/v5.15/drivers/media/i2c/ks0127.c
https://github.com/torvalds/linux/blob/v5.15/drivers/media/i2c/ks0127.c
https://github.com/torvalds/linux/blob/v6.9/drivers/pci/quirks.c
https://github.com/torvalds/linux/blob/v6.9/drivers/pci/quirks.c
https://www.openbmc.org/
https://doi.org/10.3929/ethz-b-000632755
https://doi.org/10.3929/ethz-b-000632755
https://doi.org/10.3929/ethz-b-000632755
https://llvm.org/
https://doi.org/10.1145/3437992.3439916
https://dl.acm.org/doi/10.1145/3437992.3439916
https://doi.org/10.1145/3190508.3190539
https://doi.org/10.1145/3190508.3190539
https://doi.org/10.1145/3190508.3190539
https://doi.org/10.1145/2559934
https://doi.org/10.1145/2559934
https://doi.org/10.1007/3-540-10256-6
http://link.springer.com/10.1007/3-540-10256-6
http://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
http://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html

Bibliography

[131] Roman Meier. “Declarative Dynamic Power Management”. Master’s Thesis. ETH Zurich,
Oct. 2022. doi: 10.3929/ethz-b-000583405. url: https://doi.org/10.3929/
ethz-b-000583405 (cit. on p. 5).

[132] Mercury XU5 SoC Module User Manual. English. Version 08. Enclustra. Feb. 2021. 65 pp.
(cit. on p. 9).

[133] Mercury ZX5 SoC Module User Manual. English. Version 06. Enclustra. Feb. 2021. 53 pp.
(cit. on p. 7).

[134] Fabrice Mérillon, Laurent Réveillère, Charles Consel, Renaud Marlet, and Gilles Muller.
“Devil: An IDL for Hardware Programming”. In: Fourth Symposium on Operating Systems

Design and Implementation (OSDI 2000). San Diego, CA: USENIX Association, 2000.
url: https://www.usenix.org/conference/osdi-2000/devil-idl-hardware-
programming (cit. on p. 98).

[135] W. Morris. “Latchup in CMOS”. In: 2003 IEEE International Reliability Physics Sympo-

sium Proceedings, 2003. 41st Annual. Mar. 2003, pp. 76–84. doi: 10.1109/RELPHY.
2003.1197724. url: https://ieeexplore.ieee.org/document/1197724 (cit. on
p. 27).

[136] Janani Mukundan, Hillery Hunter, Kyu-hyoun Kim, Jeffrey Stuecheli, and José F.
Martínez. “Understanding and Mitigating Refresh Overheads in High-Density DDR4
DRAM Systems”. In: Proceedings of the 40th Annual International Symposium on Com-

puter Architecture. ISCA ’13. New York, NY, USA: Association for Computing Machinery,
June 2013, pp. 48–59. isbn: 978-1-4503-2079-5. doi: 10.1145/2485922.2485927. url:
https://doi.org/10.1145/2485922.2485927 (cit. on p. 27).

[137] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram Kaul. “Declarative Infrastructure
Configuration Synthesis and Debugging”. In: Journal of Network and Systems Manage-

ment 16.3 (Sept. 2008), pp. 235–258. issn: 1573-7705. doi: 10.1007/s10922-008-
9108-y. url: https://doi.org/10.1007/s10922-008-9108-y (cit. on p. 49).

[138] Vikram Narayanan, Marek S. Baranowski, Leonid Ryzhyk, Zvonimir Rakamarić, and An-
ton Burtsev. “RedLeaf: Towards An Operating System for Safe and Verified Firmware”. In:
Proceedings of the Workshop on Hot Topics in Operating Systems. HotOS ’19. Bertinoro,
Italy: Association for Computing Machinery, May 2019, pp. 37–44. isbn: 978-1-4503-
6727-1. doi: 10.1145/3317550.3321449. url: https://doi.org/10.1145/
3317550.3321449 (cit. on pp. 2, 107).

[139] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, Zhaofeng Li, Gerd Zell-
weger, and Anton Burtsev. “RedLeaf: Isolation and Communication in a Safe Operating
System”. In: 14th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20). 2020, pp. 21–39. isbn: 978-1-939133-19-9. url: https://www.usenix.
org/conference/osdi20/presentation/narayanan-vikram (cit. on p. 107).

147

https://doi.org/10.3929/ethz-b-000583405
https://doi.org/10.3929/ethz-b-000583405
https://doi.org/10.3929/ethz-b-000583405
https://www.usenix.org/conference/osdi-2000/devil-idl-hardware-programming
https://www.usenix.org/conference/osdi-2000/devil-idl-hardware-programming
https://doi.org/10.1109/RELPHY.2003.1197724
https://doi.org/10.1109/RELPHY.2003.1197724
https://ieeexplore.ieee.org/document/1197724
https://doi.org/10.1145/2485922.2485927
https://doi.org/10.1145/2485922.2485927
https://doi.org/10.1007/s10922-008-9108-y
https://doi.org/10.1007/s10922-008-9108-y
https://doi.org/10.1007/s10922-008-9108-y
https://doi.org/10.1145/3317550.3321449
https://doi.org/10.1145/3317550.3321449
https://doi.org/10.1145/3317550.3321449
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram

Bibliography

[140] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt,
Emina Torlak, and Xi Wang. “Hyperkernel: Push-Button Verification of an OS Kernel”.
In: Proceedings of the 26th Symposium on Operating Systems Principles. SOSP ’17. New
York, NY, USA: Association for Computing Machinery, Oct. 2017, pp. 252–269. isbn:
978-1-4503-5085-3. doi: 10.1145/3132747.3132748. url: https://dl.acm.org/
doi/10.1145/3132747.3132748 (visited on 10/15/2024) (cit. on p. 106).

[141] Mattias O’Nils and Axel Jantsch. “Device Driver and DMA Controller Synthesis from
HW/SW Communication Protocol Specifications”. In: Design Automation for Embedded

Systems 6.2 (Apr. 2001), pp. 177–205. issn: 1572-8080. doi: 10.1023/A:10112467317
56. url: https://doi.org/10.1023/A:1011246731756 (cit. on p. 97).

[142] OpenBMC project community. OpenBMC. 2024. url: https://github.com/openbm
c/openbmc (visited on 09/08/2022) (cit. on p. 87).

[143] OpenTitan. Platform Integrity Module. Mar. 2023. url: https://opentitan.org/
book/doc/use_cases/platform_integrity_module/index.html (visited on
10/18/2024) (cit. on p. 103).

[144] Ross B. Ortega and Gaetano Borriello. “Communication Synthesis for Distributed Em-
bedded Systems”. In: Proceedings of the 1998 IEEE/ACM International Conference on

Computer-aided Design. ICCAD ’98. New York, NY, USA: Association for Computing
Machinery, Nov. 1998, pp. 437–444. isbn: 978-1-58113-008-9. doi: 10.1145/288548.
289067. url: https://dl.acm.org/doi/10.1145/288548.289067 (cit. on p. 97).

[145] Mathieu Paturel, Isitha Subasinghe, and Gernot Heiser. “First Steps in Verifying the
seL4 Core Platform”. In: Proceedings of the 14th ACM SIGOPS Asia-Pacific Workshop

on Systems. APSys ’23. New York, NY, USA: Association for Computing Machinery,
Aug. 2023, pp. 9–15. isbn: 9798400703058. doi: 10.1145/3609510.3609821. url:
https://dl.acm.org/doi/10.1145/3609510.3609821 (visited on 10/14/2024)
(cit. on pp. 106, 109).

[146] PCI-SIG. PCI Express Base Specification. Version Revision 6.0. Dec. 2021 (cit. on p. 117).

[147] Havoc Pennington, Anders Carlsson, Alexander Larsson, Sven Herzberg, Simon McVittie,
and David Zeuthen. D-Bus. Version 0.42. Aug. 2023. url: https://dbus.freedeskto
p.org/doc/dbus-specification.html (visited on 10/22/2024) (cit. on pp. 2, 11).

[148] Johannes Åman Pohjola, Hira Taqdees Syeda, Miki Tanaka, Krishnan Winter, Tsun Wang
Sau, Benjamin Nott, Tiana Tsang Ung, Craig McLaughlin, Remy Seassau, Magnus O.
Myreen, Michael Norrish, and Gernot Heiser. “Pancake: Verified Systems Programming
Made Sweeter”. In: Proceedings of the 12th Workshop on Programming Languages and

Operating Systems. PLOS ’23. New York, NY, USA: Association for Computing Machin-
ery, Oct. 2023, pp. 1–9. isbn: 9798400704048. doi: 10.1145/3623759.3624544. url:
https://dl.acm.org/doi/10.1145/3623759.3624544 (cit. on pp. 65, 99).

[149] CVE Project. CVE Project History. url: https://www.cve.org/About/History
(visited on 10/29/2024) (cit. on p. 18).

148

https://doi.org/10.1145/3132747.3132748
https://dl.acm.org/doi/10.1145/3132747.3132748
https://dl.acm.org/doi/10.1145/3132747.3132748
https://doi.org/10.1023/A:1011246731756
https://doi.org/10.1023/A:1011246731756
https://doi.org/10.1023/A:1011246731756
https://github.com/openbmc/openbmc
https://github.com/openbmc/openbmc
https://opentitan.org/book/doc/use_cases/platform_integrity_module/index.html
https://opentitan.org/book/doc/use_cases/platform_integrity_module/index.html
https://doi.org/10.1145/288548.289067
https://doi.org/10.1145/288548.289067
https://dl.acm.org/doi/10.1145/288548.289067
https://doi.org/10.1145/3609510.3609821
https://dl.acm.org/doi/10.1145/3609510.3609821
https://dbus.freedesktop.org/doc/dbus-specification.html
https://dbus.freedesktop.org/doc/dbus-specification.html
https://doi.org/10.1145/3623759.3624544
https://dl.acm.org/doi/10.1145/3623759.3624544
https://www.cve.org/About/History

Bibliography

[150] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. “VoltJockey: Breaching
TrustZone by Software-Controlled Voltage Manipulation over Multi-core Frequencies”.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security. CCS ’19. New York, NY, USA: Association for Computing Machinery, Nov.
2019, pp. 195–209. isbn: 978-1-4503-6747-9. doi: 10.1145/3319535.3354201. url:
https://doi.org/10.1145/3319535.3354201 (cit. on pp. 24, 25, 29).

[151] Andrew Regenscheid. Platform Firmware Resiliency Guidelines. Tech. rep. NIST SP 800-
193. Gaithersburg, MD: National Institute of Standards and Technology, May 2018, NIST
SP 800–193. doi: 10.6028/NIST.SP.800-193. url: http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-193.pdf (cit. on p. 17).

[152] Ariella Robison. The Missing Security Primer for Bare Metal Cloud Services - Eclypsium.
Feb. 2019. url: https://eclypsium.com/blog/the-missing-security-primer-
for-bare-metal-cloud-services/ (visited on 10/29/2024) (cit. on p. 17).

[153] Nadav Rotem. C-to-Verilog.Com: High-Level Synthesis Using LLVM. Nov. 2010. url: htt
ps://llvm.org/devmtg/2010-11/Rotem-CToVerilog.pdf (visited on 05/21/2024)
(cit. on p. 73).

[154] Leonid Ryzhyk, Nikolaj Bjørner, Marco Canini, Jean-Baptiste Jeannin, Cole Schlesinger,
Douglas B. Terry, and George Varghese. “Correct by Construction Networks Using Step-
wise Refinement”. In: 14th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 17). 2017, pp. 683–698. isbn: 978-1-931971-37-9. url: https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/ryzhyk

(cit. on p. 49).

[155] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. “Dingo: Taming Device
Drivers”. In: Proceedings of the 4th ACM European Conference on Computer Systems.
EuroSys ’09. New York, NY, USA: Association for Computing Machinery, Apr. 2009,
pp. 275–288. isbn: 978-1-60558-482-9. doi: 10.1145/1519065.1519095. url: https:
//dl.acm.org/doi/10.1145/1519065.1519095 (cit. on p. 48).

[156] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot Heiser. “Auto-
matic Device Driver Synthesis with Termite”. In: Proceedings of the ACM SIGOPS 22nd

Symposium on Operating Systems Principles - SOSP ’09. Big Sky, Montana, USA: ACM
Press, 2009, p. 73. isbn: 978-1-60558-752-3. doi: 10.1145/1629575.1629583. url:
http://portal.acm.org/citation.cfm?doid=1629575.1629583 (cit. on pp. 48,
98).

[157] Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun Raghunath, Michael
Stumm, and Mona Vĳ. “User-Guided Device Driver Synthesis”. In: Proceedings of the

11th USENIX Conference on Operating Systems Design and Implementation. OSDI’14.
Berkeley, CA, USA: USENIX Association, 2014, pp. 661–676. isbn: 978-1-931971-16-4.
url: http://dl.acm.org/citation.cfm?id=2685048.2685101 (cit. on pp. 48, 98).

149

https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.6028/NIST.SP.800-193
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://eclypsium.com/blog/the-missing-security-primer-for-bare-metal-cloud-services/
https://eclypsium.com/blog/the-missing-security-primer-for-bare-metal-cloud-services/
https://llvm.org/devmtg/2010-11/Rotem-CToVerilog.pdf
https://llvm.org/devmtg/2010-11/Rotem-CToVerilog.pdf
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/ryzhyk
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/ryzhyk
https://doi.org/10.1145/1519065.1519095
https://dl.acm.org/doi/10.1145/1519065.1519095
https://dl.acm.org/doi/10.1145/1519065.1519095
https://doi.org/10.1145/1629575.1629583
http://portal.acm.org/citation.cfm?doid=1629575.1629583
http://dl.acm.org/citation.cfm?id=2685048.2685101

Bibliography

[158] Behzad Salami, Osman Unsal, and Adrian Cristal. “Fault Characterization Through FPGA
Undervolting”. In: 2018 28th International Conference on Field Programmable Logic

and Applications (FPL). Aug. 2018, pp. 85–853. doi: 10.1109/FPL.2018.00023. url:
https://ieeexplore.ieee.org/document/8533473 (visited on 10/30/2024) (cit. on
p. 119).

[159] Uday Savagaonkar and Nelly Porter. Titan in Depth: Security in Plaintext. Aug. 2017.
url: https://cloud.google.com/blog/products/identity-security/titan-
in-depth-security-in-plaintext (visited on 10/18/2024) (cit. on p. 103).

[160] SBS Implementers Forum. System Management Bus (SMBus) Specification. Aug. 2000.
url: http://smbus.org/specs/index.html (cit. on p. 65).

[161] Jasmin Schult. “A model-based approach to platform-level power and clock management”.
Bachelor’s Thesis. ETH Zurich, Aug. 2020. doi: 10.3929/ethz-b-000490632. url:
https://doi.org/10.3929/ethz-b-000490632 (cit. on p. 5).

[162] Jasmin Schult, Ben Fiedler, David Cock, and Timothy Roscoe. “Semi-Open-State Testing
for in-Silicon Coherent Interconnects”. In: Proceedings of the 24th Conference on Formal

Methods in Computer-Aided Design – FMCAD 2024. TU Wien Academic Press, Oct. 2024,
pp. 153–162. isbn: 978-3-85448-065-5. doi: 10.34727/2024/isbn.978-3-85448-
065-5_21. url: https://repositum.tuwien.at/handle/20.500.12708/200788
(visited on 10/24/2024) (cit. on p. 110).

[163] Jasmin Schult, Daniel Schwyn, Michael Giardino, David Cock, Reto Achermann, and
Timothy Roscoe. “Declarative Power Sequencing”. In: ACM Transactions on Embedded

Computing Systems 20.5s (Sept. 2021). issn: 1539-9087. doi: 10.1145/3477039. url:
https://doi.org/10.1145/3477039 (cit. on p. 5).

[164] Adrian Schüpbach, Andrew Baumann, Timothy Roscoe, and Simon Peter. “A Declarative
Language Approach to Device Configuration”. In: Proceedings of the Sixteenth Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems. ASPLOS XVI. New York, NY, USA: Association for Computing Machinery,
Mar. 2011, pp. 119–132. isbn: 978-1-4503-0266-1. doi: 10.1145/1950365.1950382.
url: https://dl.acm.org/doi/10.1145/1950365.1950382 (cit. on pp. 49, 67).

[165] Daniel Schwyn, Zikai Liu, and Timothy Roscoe. “Efeu: generating efficient, verified,
hybrid hardware/software drivers for I2C devices”. In: Proceedings of the Twentieth Eu-

ropean Conference on Computer Systems. EuroSys ’25. Rotterdam, Netherlands: Asso-
ciation for Computing Machinery, Mar. 2025, pp. 76–93. isbn: 9798400711961. doi:
10.1145/3689031.3696093. url: https://doi.org/10.1145/3689031.3696093
(cit. on p. 5).

[166] seL4 Foundation. Frequently Asked Questions on seL4. Oct. 2024. url: https://docs.
sel4.systems/projects/sel4/frequently-asked-questions.html (visited on
10/24/2024) (cit. on p. 109).

[167] seL4 Foundation. seL4 Foundation Membership. 2024. url: https://sel4.systems/
Foundation/Membership/ (visited on 10/24/2024) (cit. on p. 109).

150

https://doi.org/10.1109/FPL.2018.00023
https://ieeexplore.ieee.org/document/8533473
https://cloud.google.com/blog/products/identity-security/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/identity-security/titan-in-depth-security-in-plaintext
http://smbus.org/specs/index.html
https://doi.org/10.3929/ethz-b-000490632
https://doi.org/10.3929/ethz-b-000490632
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_21
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_21
https://repositum.tuwien.at/handle/20.500.12708/200788
https://doi.org/10.1145/3477039
https://doi.org/10.1145/3477039
https://doi.org/10.1145/1950365.1950382
https://dl.acm.org/doi/10.1145/1950365.1950382
https://doi.org/10.1145/3689031.3696093
https://doi.org/10.1145/3689031.3696093
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html
https://sel4.systems/Foundation/Membership/
https://sel4.systems/Foundation/Membership/

Bibliography

[168] seL4 Foundation. seL4 Project Roadmap. Oct. 2024. url: https : / / docs . sel4 .
systems/projects/roadmap.html (visited on 10/24/2024) (cit. on p. 109).

[169] seL4 Foundation. Verified Configurations. Oct. 2024. url: https://docs.sel4.sys
tems/projects/sel4/verified-configurations.html (visited on 10/24/2024)
(cit. on p. 109).

[170] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. “Translation Valida-
tion for a Verified OS Kernel”. In: ACM SIGPLAN Notices 48.6 (June 2013), pp. 471–482.
issn: 0362-1340. doi: 10.1145/2499370.2462183 (cit. on pp. 80, 106).

[171] Alireza Shameli-Sendi. “Understanding Linux Kernel Vulnerabilities”. In: Journal of

Computer Virology and Hacking Techniques 17.4 (Dec. 2021), pp. 265–278. issn: 2263-
8733. doi: 10.1007/s11416-021-00379-x. url: https://doi.org/10.1007/
s11416-021-00379-x (visited on 11/01/2024) (cit. on pp. 18, 102).

[172] Mirela Simonović, Vojin Živojnović, and Lazar Saranovac. “Formal Model for System-
Level Power Management Design”. In: Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2017. Mar. 2017, pp. 1599–1602. doi: 10.23919/DATE.2017.
7927245. url: https://ieeexplore.ieee.org/document/7927245 (cit. on p. 50).

[173] Stewart Smith. CVE-2019-6260: Gaining Control of BMC from the Host Processor.
Jan. 2019. url: https://www.flamingspork.com/blog/2019/01/23/cve-
2019-6260-gaining-control-of-bmc-from-the-host-processor/ (visited on
08/22/2024) (cit. on p. 17).

[174] Amnapardaz Soft. Take the Lights-out - Implant.ARM.iLOBleed.a. Dec. 2021. url: htt
ps://threats.amnpardaz.com/en/wp-content/uploads/sites/5/2021/12/

Implant.ARM_.iLOBleed.a-en.pdf (visited on 08/22/2024) (cit. on p. 17).

[175] Antmicro Open Source. ARTIX DC-SCM. 2020. url: https://opensource.antmicr
o.com/projects/artix-dc-scm/ (visited on 05/16/2024) (cit. on pp. 9, 67).

[176] SPIN development community. Promela Manual page. 2012. url: http://spinroot.
com/spin/Man/promela.html (visited on 08/02/2023) (cit. on pp. 64, 73, 80, 85).

[177] Roberto Starc, Tom Kuchler, Michael Giardino, and Ana Klimovic. “Serverless? RISC
More!” In: Proceedings of the 2nd Workshop on SErverless Systems, Applications and

MEthodologies. SESAME ’24. New York, NY, USA: Association for Computing Machin-
ery, Apr. 2024, pp. 15–24. isbn: 9798400705458. doi: 10.1145/3642977.3652095.
url: https://dl.acm.org/doi/10.1145/3642977.3652095 (visited on 10/24/2024)
(cit. on p. 110).

[178] Michael Sugden. The Missing Middle: Addressing the Absence of Firmware Security. Jan.
2024. url:https://www.fdd.org/analysis/2024/01/25/the-missing-middle/
(cit. on p. 17).

151

https://docs.sel4.systems/projects/roadmap.html
https://docs.sel4.systems/projects/roadmap.html
https://docs.sel4.systems/projects/sel4/verified-configurations.html
https://docs.sel4.systems/projects/sel4/verified-configurations.html
https://doi.org/10.1145/2499370.2462183
https://doi.org/10.1007/s11416-021-00379-x
https://doi.org/10.1007/s11416-021-00379-x
https://doi.org/10.1007/s11416-021-00379-x
https://doi.org/10.23919/DATE.2017.7927245
https://doi.org/10.23919/DATE.2017.7927245
https://ieeexplore.ieee.org/document/7927245
https://www.flamingspork.com/blog/2019/01/23/cve-2019-6260-gaining-control-of-bmc-from-the-host-processor/
https://www.flamingspork.com/blog/2019/01/23/cve-2019-6260-gaining-control-of-bmc-from-the-host-processor/
https://threats.amnpardaz.com/en/wp-content/uploads/sites/5/2021/12/Implant.ARM_.iLOBleed.a-en.pdf
https://threats.amnpardaz.com/en/wp-content/uploads/sites/5/2021/12/Implant.ARM_.iLOBleed.a-en.pdf
https://threats.amnpardaz.com/en/wp-content/uploads/sites/5/2021/12/Implant.ARM_.iLOBleed.a-en.pdf
https://opensource.antmicro.com/projects/artix-dc-scm/
https://opensource.antmicro.com/projects/artix-dc-scm/
http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/Man/promela.html
https://doi.org/10.1145/3642977.3652095
https://dl.acm.org/doi/10.1145/3642977.3652095
https://www.fdd.org/analysis/2024/01/25/the-missing-middle/

Bibliography

[179] Jun Sun, Wanghong Yuan, Mahesh Kallahalla, and Nayeem Islam. “HAIL: A Language
for Easy and Correct Device Access”. In: Proceedings of the 5th ACM International

Conference on Embedded Software. EMSOFT ’05. New York, NY, USA: Association for
Computing Machinery, Sept. 2005, pp. 1–9. isbn: 978-1-59593-091-0. doi: 10.1145/
1086228.1086230. url: https://dl.acm.org/doi/10.1145/1086228.1086230
(cit. on p. 98).

[180] Supermicro. Supermicro Intelligent Management. 2024. url: https://www.superm
icro.com/en/solutions/management- software/bmc- resources (visited on
11/02/2024) (cit. on p. 10).

[181] Lalith Suresh, João Loff, Nina Narodytska, Leonid Ryzhyk, Mooly Sagiv, and Brian Oki.
“Synthesizing Cluster Management Code for Distributed Systems”. In: Proceedings of

the Workshop on Hot Topics in Operating Systems. HotOS ’19. New York, NY, USA:
Association for Computing Machinery, May 2019, pp. 45–50. isbn: 978-1-4503-6727-1.
doi: 10.1145/3317550.3321444. url: https://doi.org/10.1145/3317550.
3321444 (cit. on p. 49).

[182] System Management Interface Forum, Inc. PMBus Power System Management Protocol

Specification Part I – General Requirements, Transport And Electrical Interface. Mar.
2015. url: https://pmbusprod.wpenginepowered.com/wp-content/uploads/
2022/01/PMBus-Specification-Rev-1-3-1-Part-I-20150313.pdf (cit. on
pp. 30, 65).

[183] System Management Interface Forum, Inc. PMBus Power System Management Protocol

Specification Part II – Command Language. Mar. 2015. url: https://pmbusprod.
wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-

Rev-1-3-1-Part-II-20150313.pdf (cit. on pp. 30, 65).

[184] systemd. systemd. 2024. url: https://systemd.io (visited on 10/22/2024) (cit. on
p. 11).

[185] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLKSCREW: Exposing the
Perils of Security-Oblivious Energy Management”. In: 26th USENIX Security Symposium

(USENIX Security 17). 2017, pp. 1057–1074. isbn: 978-1-931971-40-9. url: https:
//www.usenix.org/conference/usenixsecurity17/technical- sessions/

presentation/tang (cit. on pp. 24, 25, 29).

[186] Enzian Team. Enzian. July 2021. url: http://enzian.systems (cit. on pp. 3, 7).

[187] TechInsights. ODM Sales Soar as Hyperscalers and Cloud Providers Go Direct. url:
https://www.techinsights.com/blog/odm-sales-soar-hyperscalers-and-

cloud-providers-go-direct-1 (visited on 10/03/2024) (cit. on p. 10).

[188] Positive Technologies. Dell EMC Fixes iDRAC Vulnerability Found by Positive Technolo-

gies. July 2020. url: https://www.ptsecurity.com/ww-en/about/news/dell-
emc-fixes-idrac-vulnerability-found-by-positive-technologies/ (vis-
ited on 08/22/2024) (cit. on p. 17).

152

https://doi.org/10.1145/1086228.1086230
https://doi.org/10.1145/1086228.1086230
https://dl.acm.org/doi/10.1145/1086228.1086230
https://www.supermicro.com/en/solutions/management-software/bmc-resources
https://www.supermicro.com/en/solutions/management-software/bmc-resources
https://doi.org/10.1145/3317550.3321444
https://doi.org/10.1145/3317550.3321444
https://doi.org/10.1145/3317550.3321444
https://pmbusprod.wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-I-20150313.pdf
https://pmbusprod.wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-I-20150313.pdf
https://pmbusprod.wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-II-20150313.pdf
https://pmbusprod.wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-II-20150313.pdf
https://pmbusprod.wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-II-20150313.pdf
https://systemd.io
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
http://enzian.systems
https://www.techinsights.com/blog/odm-sales-soar-hyperscalers-and-cloud-providers-go-direct-1
https://www.techinsights.com/blog/odm-sales-soar-hyperscalers-and-cloud-providers-go-direct-1
https://www.ptsecurity.com/ww-en/about/news/dell-emc-fixes-idrac-vulnerability-found-by-positive-technologies/
https://www.ptsecurity.com/ww-en/about/news/dell-emc-fixes-idrac-vulnerability-found-by-positive-technologies/

Bibliography

[189] Konstantinos Tovletoglou, Lev Mukhanov, Georgios Karakonstantis, Athanasios
Chatzidimitriou, George Papadimitriou, Manolis Kaliorakis, Dimitris Gizopoulos,
Zacharias Hadjilambrou, Yiannakis Sazeides, Alejandro Lampropulos, Shidhartha Das,
and Phong Vo. “Measuring and Exploiting Guardbands of Server-Grade ARMv8 CPU
Cores and DRAMs”. In: 2018 48th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks Workshops (DSN-W). June 2018, pp. 6–9. doi: 10.1109/
DSN-W.2018.00013. url: https://ieeexplore.ieee.org/document/8416198
(visited on 10/30/2024) (cit. on p. 119).

[190] Sarah Tröndle. “Real-time Board Management using an FPGA”. Bachelor’s Thesis. ETH
Zurich, Apr. 2021. doi: 10.3929/ethz-b-000533010. url: https://doi.org/10.
3929/ethz-b-000533010 (cit. on pp. 6, 112).

[191] u-bmc. u-bmc. 2015. url: https://u-bmc.org/ (visited on 07/22/2024) (cit. on p. 10).

[192] UEFI Forum Inc. Advanced Configuration and Power Interface (ACPI) Specification,

Version 6.3. Jan. 2020. url: https://uefi.org/sites/default/files/resource
s/ACPI_6_3_final_Jan30.pdf (cit. on pp. 50, 117).

[193] UEFI Forum Inc. Unified Extensible Firmware Interface Specification. Version 2.6. Jan.
2016 (cit. on p. 1).

[194] Steven J. Vaughan-Nichols. MINIX: Intel’s hidden in-chip operating system. Nov. 2017.
url: https://www.zdnet.com/article/minix- intels- hidden- in- chip-
operating-system/ (visited on 10/10/2020) (cit. on p. 2).

[195] D. Verkest, K. Van Rompaey, I. Bolsens, and H. De Man. “CoWare—A Design Environ-
ment for Heterogeneous Hardware/Software Systems”. In: Design Automation for Embed-

ded Systems 1.4 (Oct. 1996), pp. 357–386. issn: 1572-8080. doi: 10.1007/BF00209910.
url: https://doi.org/10.1007/BF00209910 (cit. on p. 97).

[196] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. “Boolean Satisfiability Solvers
and Their Applications in Model Checking”. In: Proceedings of the IEEE 103.11 (Nov.
2015), pp. 2021–2035. issn: 1558-2256. doi: 10.1109/JPROC.2015.2455034. url:
https://ieeexplore.ieee.org/document/7225110 (cit. on p. 83).

[197] Bingyao Wang, Sepehr Noorafshan, Reto Achermann, and Margo Seltzer. “Synthesizing
Device Drivers with Ghost Writer”. In: Proceedings of the 12th Workshop on Programming

Languages and Operating Systems. PLOS ’23. New York, NY, USA: Association for
Computing Machinery, Oct. 2023, pp. 10–17. isbn: 9798400704048. doi: 10.1145/
3623759.3624545. url: https://dl.acm.org/doi/10.1145/3623759.3624545
(cit. on p. 98).

[198] Shaojie Wang and Sharad Malik. “Synthesizing Operating System Based Device Drivers in
Embedded Systems”. In: Proceedings of the 1st IEEE/ACM/IFIP International Conference

on Hardware/Software Codesign and System Synthesis. CODES+ISSS ’03. New York, NY,
USA: Association for Computing Machinery, Oct. 2003, pp. 37–44. isbn: 978-1-58113-
742-2. doi: 10.1145/944645.944655. url: https://doi.org/10.1145/944645.
944655 (cit. on p. 48).

153

https://doi.org/10.1109/DSN-W.2018.00013
https://doi.org/10.1109/DSN-W.2018.00013
https://ieeexplore.ieee.org/document/8416198
https://doi.org/10.3929/ethz-b-000533010
https://doi.org/10.3929/ethz-b-000533010
https://doi.org/10.3929/ethz-b-000533010
https://u-bmc.org/
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://www.zdnet.com/article/minix-intels-hidden-in-chip-operating-system/
https://www.zdnet.com/article/minix-intels-hidden-in-chip-operating-system/
https://doi.org/10.1007/BF00209910
https://doi.org/10.1007/BF00209910
https://doi.org/10.1109/JPROC.2015.2455034
https://ieeexplore.ieee.org/document/7225110
https://doi.org/10.1145/3623759.3624545
https://doi.org/10.1145/3623759.3624545
https://dl.acm.org/doi/10.1145/3623759.3624545
https://doi.org/10.1145/944645.944655
https://doi.org/10.1145/944645.944655
https://doi.org/10.1145/944645.944655

Bibliography

[199] Nate Warfield, Scott Scheferman, and Vlad Babkin. BMC&C: Lights Out Forever. July
2023. url: https://eclypsium.com/research/bmcc- lights- out- forever/
(visited on 08/22/2024) (cit. on p. 17).

[200] Georg Wehrli. “Generating Platform Configuration from Netlists”. Bachelor’s Thesis.
ETH Zurich, May 2024. doi: 10.3929/ethz-b-000684943. url: https://doi.org/
10.3929/ethz-b-000684943 (cit. on pp. 6, 118).

[201] Robert V. White. “PMBus: A Decade of Growth: An Open-Standards Success”. In: IEEE

Power Electronics Magazine 1.3 (Sept. 2014), pp. 33–39. issn: 2329-9215. doi: 10.
1109/MPEL.2014.2330492. url: https://ieeexplore.ieee.org/abstract/
document/6891449 (cit. on p. 65).

[202] Rob Wilbert. Enabling Open Embedded Systems Management on PowerEdge Servers. Nov.
2022. url: https://www.dell.com/en-us/blog/enabling-open-embedded-
systems-management-on-poweredge-servers/ (cit. on p. 10).

[203] Chao Xu, Felix Xiaozhu Lin, Yuyang Wang, and Lin Zhong. “Automated OS-level Device
Runtime Power Management”. In: Proceedings of the Twentieth International Conference

on Architectural Support for Programming Languages and Operating Systems. ASPLOS
’15. New York, NY, USA: Association for Computing Machinery, Mar. 2015, pp. 239–
252. isbn: 978-1-4503-2835-7. doi: 10.1145/2694344.2694360. url: https://doi.
org/10.1145/2694344.2694360 (cit. on p. 49).

[204] Chao Xu, Felix Xiaozhu Lin, and Lin Zhong. “Device Drivers Should Not Do Power
Management”. In: Proceedings of 5th Asia-Pacific Workshop on Systems. APSys ’14. New
York, NY, USA: Association for Computing Machinery, June 2014, pp. 1–7. isbn: 978-1-
4503-3024-4. doi: 10.1145/2637166.2637233. url: https://doi.org/10.1145/
2637166.2637233 (cit. on p. 49).

[205] Pengcheng Xu. “Enzian Firmware Resource Interface”. Semester Project. ETH Zurich,
Feb. 2023. doi: 10.3929/ethz-b-000603460. url: https://doi.org/10.3929/
ethz-b-000603460 (cit. on pp. 6, 117).

[206] Jean Yang and Chris Hawblitzel. “Safe to the Last Instruction: Automated Verification of
a Type-Safe Operating System”. In: SIGPLAN Not. 45.6 (June 2010), pp. 99–110. issn:
0362-1340. doi: 10.1145/1809028.1806610. url: https://dl.acm.org/doi/10.
1145/1809028.1806610 (visited on 10/15/2024) (cit. on p. 106).

[207] Jeong-Han Yun, Gunwoo Kim, Choonho Son, and Taisook Han. “Automatic Generation of
Hardware/Software Interface with Product-Specific Debugging Tools”. In: Embedded and

Ubiquitous Computing. Ed. by Edwin Sha, Sung-Kook Han, Cheng-Zhong Xu, Moon-Hae
Kim, Laurence T. Yang, and Bin Xiao. Berlin, Heidelberg: Springer, 2006, pp. 742–753.
isbn: 978-3-540-36681-2. doi: 10.1007/11802167_75 (cit. on p. 97).

[208] Jim Zemlin. OpenBMC Project Community Comes Together at The Linux Foundation to

Define Open Source Implementation of BMC Firmware Stack. Mar. 2018. url: https:
/ / www . linuxfoundation . org / blog / blog / openbmc - project - community -

comes- together- at- the- linux- foundation- to- define- open- source-

implementation-of-bmc-firmware-stack (visited on 10/08/2024) (cit. on p. 10).

154

https://eclypsium.com/research/bmcc-lights-out-forever/
https://doi.org/10.3929/ethz-b-000684943
https://doi.org/10.3929/ethz-b-000684943
https://doi.org/10.3929/ethz-b-000684943
https://doi.org/10.1109/MPEL.2014.2330492
https://doi.org/10.1109/MPEL.2014.2330492
https://ieeexplore.ieee.org/abstract/document/6891449
https://ieeexplore.ieee.org/abstract/document/6891449
https://www.dell.com/en-us/blog/enabling-open-embedded-systems-management-on-poweredge-servers/
https://www.dell.com/en-us/blog/enabling-open-embedded-systems-management-on-poweredge-servers/
https://doi.org/10.1145/2694344.2694360
https://doi.org/10.1145/2694344.2694360
https://doi.org/10.1145/2694344.2694360
https://doi.org/10.1145/2637166.2637233
https://doi.org/10.1145/2637166.2637233
https://doi.org/10.1145/2637166.2637233
https://doi.org/10.3929/ethz-b-000603460
https://doi.org/10.3929/ethz-b-000603460
https://doi.org/10.3929/ethz-b-000603460
https://doi.org/10.1145/1809028.1806610
https://dl.acm.org/doi/10.1145/1809028.1806610
https://dl.acm.org/doi/10.1145/1809028.1806610
https://doi.org/10.1007/11802167_75
https://www.linuxfoundation.org/blog/blog/openbmc-project-community-comes-together-at-the-linux-foundation-to-define-open-source-implementation-of-bmc-firmware-stack
https://www.linuxfoundation.org/blog/blog/openbmc-project-community-comes-together-at-the-linux-foundation-to-define-open-source-implementation-of-bmc-firmware-stack
https://www.linuxfoundation.org/blog/blog/openbmc-project-community-comes-together-at-the-linux-foundation-to-define-open-source-implementation-of-bmc-firmware-stack
https://www.linuxfoundation.org/blog/blog/openbmc-project-community-comes-together-at-the-linux-foundation-to-define-open-source-implementation-of-bmc-firmware-stack

Bibliography

[209] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals, Matthew Harren,
George Necula, and Eric Brewer. “SafeDrive: Safe and Recoverable Extensions Using
Language-Based Techniques”. In: Proceedings of the 7th Symposium on Operating Systems

Design and Implementation. OSDI ’06. USA: USENIX Association, Nov. 2006, pp. 45–
60. isbn: 978-1-931971-47-8 (cit. on p. 98).

[210] Zynq UltraScale+ Device Technical Reference Manual. English. Version v2.2. Xilinx.
Dec. 2020. 1214 pp. (cit. on p. 87).

155

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Structure of the dissertation
	Notes on collaborative work

	Case Study: The Enzian BMC
	Existing BMC systems
	Adapting OpenBMC
	Prototyping the power sequencer
	Turning Enzian on

	Conclusion

	Critique of the State of the Art
	BMC vulnerability analysis
	Methodology
	Vulnerabilities over time
	A taxonomy of vulnerabilities
	A closer look at non-critical vulnerabilities

	Conclusion

	Declarative Power Sequencing
	Background
	Experience
	Model
	Algorithms
	Computing the platform state
	Computing the sequence
	Full power-up sequence

	Evaluation
	Generating working power sequences
	Efficient state generation
	Efficient Sequence Generation
	Re-computing sequences for new revisions
	Adapting the tool

	Related Work
	Conclusion

	Dynamic Power Management
	Changes to the model
	New algorithms
	Computing the platform state

	Evaluation
	Conclusion
	An alternative to online sequence generation

	A Trustworthy I2C Stack
	Background and problem statement
	The importance of I2C and related protocols
	What makes I2C different?
	The I2C protocol stack and ecosystem

	Efeu design and implementation
	Specifying the driver stack
	Efeu compiler overview
	C Backend
	Verilog backend
	Generating hybrid hardware/software drivers
	Promela backend

	Verification
	Approach
	Verification Code Size
	Verification Runtime
	Scalability
	Non-Standard Devices

	Evaluation on real hardware
	Source code size
	Achievable Bus Speeds
	CPU Usage
	FPGA resource utilization
	Discussion

	Related Work
	Hardware/software co-design
	Driver synthesis
	Driver verification

	Conclusion

	System Design
	Providing isolation
	Physical separation
	Software isolation
	Summary

	A trustworthy BMC design
	BMC cyber retrofit
	Creating trusted BMC components
	Trusted BMC hardware components

	Preventing vulnerabilities by design
	Preventing vulnerabilities in critical components
	Preventing privilege escalation vulnerabilities
	Containing non-critical vulnerabilities

	Conclusion

	Future Work
	Cyber-retrofitting BMCs
	More trustworthy components
	Component interfaces
	BMC interfaces

	Hardware topology and schematics
	Extracting topology information
	Generating netlists from specifications

	Opening BMCs for research
	BMCs and the de-facto OS

	Conclusion
	List of Figures
	List of Tables
	List of Acronyms
	Bibliography

