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Abstract

Booting a non-Linux operating system on ARM-based systems is difficult. The
booting infrastructure developed targeting solely Linux, Linux in turn evolved
to be bootable on a wide range of such systems. As a result, it is simple to
boot Linux, but difficult to boot a non-Linux OS on an ARM-based system. In
this thesis, we use Linux as a boot loader to boot a target, non-Linux kernel.
The idea is to leave the boot and initialization process to Linux, then take over
the initialized system. We focus on making booting simpler for new research
kernels in development. To make the development of a new kernel simpler, we
let Linux continue its execution after boot in order to support the new kernel.

In this thesis, we show the feasibility of such a boot loader and describe a
concrete implementation. This boot loader implementation is able to boot a
simple kernel. The boot process never turns a CPU off, thus leaving it in an
initialized state. A virtual address space with an identity map is created for the
booted kernel. The boot environment can be modified to suit specific use cases.
We show that it is possible to use virtio to let the booted kernel use a device
through Linux, by letting it use a virtio console in that way. The device type
specific implementation of virtio is decoupled from the specific physical device,
so by implementing it once, all physical devices of that type can be used. The
boot loader itself profits from the hardware and software support of Linux as
well, enabling it to use devices, file systems and networking out of the box.
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1 Introduction

Booting an operating system that is not Linux on an ARM-based system is
difficult. There are many different loaders which are all designed to solely boot
Linux. At the same time, the Linux kernel evolved to be able to boot on a wide
variety of ARM-based systems. This results in the situation where it is simple
to boot Linux on an ARM system, but very difficult to boot a non-Linux OS.
It gets even worse if the non-Linux OS should be bootable on a range of such
systems. As a consequence, academic research in OS design and implementation
targets x86 for the most part. If it does target ARM, then just a single system
with no hope of wide portability.

This thesis explores the idea of using Linux as a boot loader to boot a non-
Linux OS. Instead of dealing with booting, why not leave it to Linux which is
already able to boot on a wide range of ARM systems. After booting Linux, it
could load the non-Linux OS kernel and boot it. Using Linux as a boot loader
has the benefit that any system that boots Linux can in theory boot a non-
Linux OS. Another advantage is that such a boot loader can take advantage of
existing software support of Linux. Whether device drivers, network protocols
or file system support, they are all supported and maintained by Linux, so the
boot loader can just use them.

To make ARM-based systems more appealing for operating system research,
we put the focus on booting new operating systems that are in development.
The system should be handed over to such a new OS in an initialized state, the
less initialization the new OS has to perform the better. When developing a
research OS, one might want to explore a specific part of OS design, but require
functionality outside of that focus. To give an example, such functionality could
be storing a file, sending a network packet or simply printing a message. Instead
of implementing such functionality in the new OS, it could be provided by Linux.
Offloading functionality that involves interaction with devices makes the new
OS more portable, since you can make Linux take care of the device interaction.
So, in contrast to regular boot loaders, we keep Linux running after boot in
order to support the new OS.

The goal of this thesis is to show the feasibility of using Linux as a boot
loader that keeps executing after booting a kernel in order to support it. The
intention is to make a boot loader suited for OS development. The boot process
should not reset the initialization performed by Linux and keep the system in
an initialized state. Linux should support the booted kernel by letting it use
a device through it. As Linux and the booted kernel execute in parallel, they
need to be restricted in the resources they use to prevent interfering with each
other.

The concrete target platform of this project are ARMv8-based systems and
OS kernels written in Rust. We will call the kernel that is booted by Linux the
Rust kernel in this thesis. This makes it clearer whether we refer to the Linux
kernel or to the kernel being booted. The kernel does not need to be written
in Rust, our boot loader just expects that the kernel is an ELF executable.
The modifications to Linux should be contained inside a Linux kernel module
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if possible. A kernel module is easier to use and debug compared to modifying
the Linux kernel itself. A modified kernel needs to be compiled in its entirety,
a kernel module can simply be loaded into a running kernel. Porting a kernel
module to a newer kernel version is simpler as well, since all changes are con-
tained in one place. In this thesis, we assume that the machine is able to boot
Linux in some way. How Linux boots is not relevant for this thesis, as we are
always working with a machine running Linux and try to boot a Rust kernel
from there.

We will now give a brief overview on how this boot loader works. The boot
process to boot a Rust kernel on a CPU tricks Linux into believing that the CPU
is turned off, while it is actually executing the Rust kernel. This is achieved by
disabling the part in Linux’s CPU shutdown process that actually shuts down
the CPU. Believing that the CPU is shut down, Linux does not interact with
the CPU in any way, thus it does not interfere with the Rust kernel. Since
the CPU is never turned off, it stays in an initialized state. The boot loader
allows the Rust kernel to use a console device through Linux. Using the console
through Linux is implemented using virtio. Linux sets up a virtual device and
forwards requests made by the Rust kernel to that virtual device to the actual
physical device. This level of indirection makes the Rust kernel independent of
the specific physical device.
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2 Background

In this section, background knowledge is provided that this thesis builds on.
It first describes two Linux specific concepts, the kernel virtual memory layout
of Linux and kexec, a mechanism to boot a new kernel from Linux. Then it
describes virtio, which is used by our boot loader to let the Rust kernel use a
virtio console through Linux.

2.1 Linux Kernel Virtual Memory Layout

Virtual memory is split into two parts, the lower half belonging to user space
and the upper half belonging to kernel space. The Linux kernel structures the
kernel address space into regions. The virtual memory layout is shown in Table 1
for the arm64 Linux kernel with 48-bit virtual addresses and 4kB pages [1].

The relevant memory regions for this thesis are the kernel logical memory
map and the vmalloc region. The Linux kernel maps the entire memory in the
kernel logical memory map during boot. In this region each virtual address
correspond to the physical address plus a constant offset. This makes it simple
to switch between virtual and physical addresses and memory is physically con-
tiguous. The vmalloc region is used for allocating virtually contiguous memory
that is not necessarily physically contiguous. This allows to allocate large vir-
tually contiguous chunks of memory, but it is slower as the mappings need to
be created. Switching between virtual and physical addresses is slower as well.

In ARM-based systems there are two registers to store the currently active
page tables: TTBR0 and TTBR1 (Translation Table Base Register). TTBR0
points to the user address space page table and TTBR1 points to the kernel
address space page table. Which page table is used for resolving an address is
determined by the first bits of the address. For 48-bit virtual addresses, it is
determined by the first 16 bits. If they are all zero, then the address is resolved
in the TTBR0 page table, if they are all one, then in the TTBR1 page table.

2.2 Kexec

Kexec is a mechanism in Linux that allows to boot a new kernel from the
currently running kernel. It does so without handing control to the firmware
and restarting the system. The currently running Linux kernel is replaced by
the new kernel and stops execution. Several projects that use Linux as a boot
loader use kexec at their core to perform the boot process. In the beginning
of this project we were considering to use kexec as well, but decided against it
later on. This section describes how kexec works.

Booting a new kernel with kexec is performed in two steps, first loading a
new kernel with the system call kexec load, then executing the new kernel with
the system call reboot, passing the argument LINUX REBOOT CMD KEXEC.
Kexec can be used in two ways, one is to reboot into a new kernel, the other
is to prepare a crash kernel that takes over once the main kernel crashes. The

3



Region Start End

user space 0x0000000000000000 0x0000ffffffffffff

kernel logical memory map 0xffff000000000000 0xffff7fffffffffff

[kasan shadow region] 0xffff600000000000 0xffff7fffffffffff

bpf jit region 0xffff800000000000 0xffff800007ffffff

modules 0xffff800008000000 0xffff80000fffffff

vmalloc 0xffff800010000000 0xfffffbffefffffff

fixed mappings (top down) 0xfffffbfff0000000 0xfffffbfffdffffff

[guard region] 0xfffffbfffe000000 0xfffffbfffe7fffff

PCI I/O space 0xfffffbfffe800000 0xfffffbffff7fffff

[guard region] 0xfffffbffff800000 0xfffffbffffffffff

vmemmap 0xfffffc0000000000 0xfffffdffffffffff

[guard region] 0xfffffe0000000000 0xffffffffffffffff

Table 1: Virtual memory layout of Linux kernel on arm64.

intention behind booting into a crash kernel is to debug the crashed main kernel.
In the following we describe these two ways of using kexec.

When using kexec to reboot into a new kernel, kexec load loads the new
kernel code into kernel memory. This location is not where the new kernel
expects to be loaded, the kernel code is not contiguous and cannot be executed in
its current form. The reason for loading the new kernel in this way is that kexec
ultimately allows loading of the new kernel at any physical memory location.
This includes locations where the currently executing kernel resides. So at the
current stage the new kernel cannot be loaded at its eventual location in order to
not interfere with the currently running kernel. After kexec load completes, the
user will at some point make the reboot system call. This initiates the kexec
reboot, which shuts down all CPUs other than the bootstrap processor and
tries to shut down all devices, such that they are in a defined and inactive state.
Then it makes a copy of a small piece of code, we call it the copy-code, turns
off the Memory Management Unit (MMU), disables the data caches and finally
executes the copy-code. The copy-code copies the code of the new kernel to its
final memory location. This copy process typically overwrites the old kernel,
so it is necessary to place the copy-code in a safe location that is unaffected.
Figure 1 illustrates how the memory layout is changed by the copy process. At
the end of the copy process, the copy-code jumps into the new kernel code. This
concludes the kexec portion of the boot process and hands control over to the
new kernel.

The behavior of kexec is different when preparing a crash kernel. The goal
is to collect debugging information from the main kernel when it crashes. As
a consequence, the crash kernel has to be loaded differently, as overwriting the
crashed main kernel deletes its state, defeating the purpose of a crash kernel
intended for debugging. So when loading a crash kernel with kexec load, it is
placed into an area of memory that is reserved at boot time with the kernel
parameter crashkernel . After kexec load completes, the crash kernel is in an
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new kernel

copy-code
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Figure 1: Kexec copy process before booting the new kernel. The copy-code
copies the new kernel to its final memory location. On the left is the memory
layout before the copy process, on the right afterwards.

executable state. When the main kernel crashes, the kexec mechanism simply
passes control to the crash kernel.

2.3 Virtio

Virtio was introduced to provide a standardized solution for paravirtualized
devices [2]. It allows the guest to access devices controlled by the host. How
such accesses work is illustrated in Figure 2. If the guest wants to send a request
to a physical device, then the virtio driver running on the guest sends it to the
virtio device running on the host. The virtio device is just a virtual device, it uses
Linux primitives like file descriptors to forward the request. Linux forwards the
requests to the physical device driver, which performs the actual communication
with the physical device and sends the request to it. The interface between virtio
driver and virtio device is specified by the virtio standard and depends on the
device type. The virtio device is independent of the specific physical device
driver, since it uses Linux primitives to interact with it. The Linux primitives
being used depend on the device type as well. So each device type needs a
different pair of virtio driver and virtio device. But the same pair can be used
to interact with any physical device driver and physical device of the same device
type.

We use virtio to allow the Rust kernel to use devices through Linux. By
implementing the virtio driver for the Rust kernel and the virtio device for
Linux for one device type, the Rust kernel can use all physical devices of that
device type. The device type that we implemented is the virtio console. We
will first describe the virtio interface between virtio driver and virtio device in
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Figure 2: Interaction between components when virtualizing a physical device
with virtio.

more detail, then we look into the hypervisor-less virtio project, from which we
use the virtio device implementation.

2.3.1 Virtio Standard

This section contains the information on virtio that this thesis builds on. We
use the virtio version 1.1 standard [3] with the legacy interface.

There are two actors in virtio: the virtio driver, running on the guest, and the
virtio device, running on the host. Virtio offers three different transport modes:
Peripheral Component Interconnect (PCI), Memory-Mapped I/O (MMIO) and
channel I/O. We use the MMIO transport mode, so communication between
virtio driver and virtio device happens through MMIO registers. If the virtio
driver writes or reads an MMIO register, it traps and passes control to the virtio
device, allowing it to react accordingly. However the actual data transport does
not happen through MMIO registers, instead it goes through the main data
structure in virtio, the virtqueue. There can be one or more virtqueues, each
virtqueue is identified by a queue number. The number of virtqueues depends on
the device type. A console device for example contains at least two virtqueues,
one for receiving and one for transmitting characters. Data is sent through a
virtqueue in buffers. Every buffer is allocated by the virtio driver and is either
read-only or write-only for the virtio device. Buffers can be chained together.
To send a buffer to the virtio device, the virtio driver adds it to the virtqueue
and marks it as available in the virtqueue. The virtio device processes the
buffer and marks it as used when it is done. Buffers are always exchanged in
this way, whether the virtio driver sends data to the virtio device or the other
way around. To inform the other party that a buffer is used or available, they
send a notification. The virtio driver does so by writing into the QueueNotify
MMIO register, the virtio device by causing an interrupt.

When the virtio driver writes into an MMIO register, then it can change the
value that other MMIO registers will return. For example, writing the virtqueue
number into the QueueSel register allows to select the specified virtqueue. This
changes the value that will be read of four other registers, namely QueueNum-
Max, QueueNum, QueueAlign and QueuePFN. But because accessing MMIO
registers blocks the virtio driver until the virtio device is done with the opera-
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tion, this does not cause any race conditions.

2.3.2 Hypervisor-less Virtio

Virtio is usually used in the context of virtualization, but we want to use virtio
between two cores without virtualization. This does not affect the virtio driver
much, because to the virtio driver the virtio device looks like a regular device.
But it does affect the virtio device, which expects to run on a hypervisor. In
most cases, the virtio device implementations are provided by the user space
hypervisor program, for example by QEMU or the Linux KVM tool. These
virtio device implementations are not intended to be used stand alone without
a virtual machine. But we want to avoid making a virtio device implementation
from scratch, since there are already several implementations. Luckily, there is
a project from OpenAMP called hypervisor-less virtio [4][5], which modifies the
Linux KVM tool [6] to run a virtio device without being a hypervisor. We will
call this modified version of the Linux KVM tool the hypervisor-less KVM tool
from now on.

Hypervisor-less virtio targets Asymmetric Multiprocessing (AMP) systems
where running one OS instance across all cores is not possible or does not satisfy
real-time, concurrency or safety requirements. For example, one subsystem
could run a general-purpose OS and another subsystem could run a real-time
OS. Hypervisor-less virtio provides a means of communication and resource
sharing between such OSes. It does so by adapting virtio to this hypervisor-less
setting. It uses the MMIO transport mode of virtio, since it can not only be used
to communicate downwards to a hypervisor, but also to communicate laterally
between OSes. The MMIO registers are put into shared memory, accessible
by both OSes. Notifications are implemented through a character device. The
hypervisor-less KVM tool, which acts as the virtio device, makes system calls
on the character device file to send and receive notifications. A write system
call sends a notification, whereas a poll system call waits for and receives a
notification. The character device implementation [7] of the hypervisor-less
KVM tool works with a specific Inter Processor Interrupt (IPI) controller and
is platform dependent. According to the virtio standard, a virtio device does
not receive notifications from a virtio driver. But the hypervisor-less KVM tool
requires them to inform the virtio device of accesses to MMIO registers by the
virtio driver.

All data shared between the hypervisor-less KVM tool and the virtio driver
are inside the shared memory region. This includes the MMIO registers, the
virtqueues and the buffers of data. The hypervisor-less KVM tool defines the
location and size of the shared memory region. It passes this information to the
virtio driver through MMIO registers. These registers are at a memory location
in the MMIO range that is currently not used by the virtio standard.
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3 Related Work

This section describes works that are related to our boot loader and compares
them. First we describe Linux boot loaders that use the kexec mechanism for
booting. Then we look into Popcorn, which runs multiple kernels on a system
and thus needs to solve similar problems like our boot loader.

3.1 Kexec based Linux Boot Loaders

The idea of using an operating system as a boot loader is not new. The paper
“Give your bootstrap the boot: Using the operating system to boot the oper-
ating system” [8] from 2004 discusses the idea and examines three mechanisms
that allow Linux to boot an OS. The mechanism of the three that is still relevant
today is kexec. Since it is included in the Linux kernel, it is an appealing option
for using Linux as a boot loader. In this section we will describe kexec based
boot loaders, with the example of kboot, and make the comparison to our boot
loader.

There are several projects that use Linux as a boot loader that are based
on kexec. One of them is kboot, a proof-of-concept implementation of a Linux
boot loader, which is described in the paper “kboot - A Boot Loader Based
on Kexec” [9] from 2006. Other similar projects that are still active are Petit-
boot [10] and kexecboot [11]. We will refer to kboot in this section, but most
statements apply to the other projects as well. The motivation behind kboot is
that there is an overlap in features between a boot loader and Linux. Different
storage devices, file system formats and network capabilities are all supported
by Linux. But on the boot loader, they either need to be re-implemented and
maintained, or they are not supported, dropping features and limiting the flex-
ibility of the boot loader. By using Linux as the boot loader, one can get all
this support for free. An additional advantage is that if the boot process fails,
then the user can try to debug the cause in a familiar Linux environment.

Kboot is a user space program which is combined with a minimal Linux OS.
This minimal Linux OS needs to be booted itself, this can happen through a
boot loader like GRUB or it can be loaded directly by the EFI firmware as an
EFI executable [12]. Once the minimal Linux OS is booted, kboot launches a
user interface, which allows to select or modify a kernel configuration to boot.
Such a kernel configuration typically contains a kernel, kernel parameters and
an initramfs. The boot itself is done by the kexec mechanism, which stops the
currently running minimal Linux OS and boots the target kernel. Every kernel
that can be booted with kexec can be booted by kboot.

We will now compare kexec based Linux boot loaders, like kboot, with our
boot loader. Both have a similar concept by using Linux as a boot loader, taking
advantage of Linux’s software and hardware support. The main difference is
that kboot stops its own execution when it boots the target kernel, whereas our
boot loader keeps running to support the target kernel. Kboot uses kexec for
booting, which is implemented and maintained by the Linux kernel developers.
Our boot loader does not use kexec, instead it uses its own booting mechanism,
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which is implemented in a Linux kernel module. The boot environment for the
target kernel is different as well. Kexec turns off the MMU, disables data caches
and tries to shut down devices. In contrast, our boot loader does none of the
above, it leaves them enabled to simplify the initialization process for the target
kernel. In conclusion, while these boot loaders have a similar approach, they
have different purposes. Kboot is intended to replace the boot loader, being
feature rich and maintainable. Our bootloader is intended to reuse existing
booting infrastructure for Linux to boot a non-Linux kernel and support it
afterwards.

3.2 Popcorn

In this section we look into Popcorn, a replicated-kernel OS based on Linux [13].
Popcorn boots multiple Linux kernel instances, each kernel instance has its
own set of CPUs, memory and physical devices. These kernels communicate
directly with each other to replicate a common OS state, which is where the
name “replicated-kernel OS” stems from. While Popcorn is not a boot loader,
it shares some of the main tasks with our boot loader: booting a new kernel
instance while keeping the previous instance running, partitioning resources
between kernel instances and sharing devices among kernel instances. For this
reason we describe Popcorn in this section and compare it to our boot loader.

The goal of Popcorn is to improve the performance of systems with heteroge-
neous Instruction Set Architecture (ISA) processors [14]. Each group of CPUs
that has the same ISA runs its own Linux kernel, compiled for the ISA. Applica-
tions can be scheduled among the different CPU groups, where Popcorn Linux
tries to schedule the given piece of code on the group best suited to execute
it. Popcorn boots new kernel instances through a modified version of kexec.
The modified kexec loads the kernel, the boot parameters and the initramfs at
the target locations. Then it sets the remote CPU’s instruction pointer to the
kernel entry point and sends an IPI to wake the CPU up. Similar to regular
Linux, a kernel instance boots on one CPU and later in the boot process starts
the remaining CPUs assigned to it. The resources of the system are partitioned
between the kernel instances, these partitions do not overlap. The resource
partitioning scheme defines these assignments and is required prior to booting.
Memory is restricted with the memmap kernel parameter, which excludes memory
from the memory map provided by the BIOS. Devices are assigned to one owner
kernel. They can still be accessed by kernels that do not own them, this hap-
pens through inter-kernel message passing. This inter-kernel message passing
is implemented with shared memory and IPIs. There are two ways to access a
device that is owned by another kernel: the access can be proxied by the owner
kernel or ownership is passed. Which method is chosen depends on the device
type. So if an application running on a local kernel makes a request to a device
owned by a different kernel, the request is either forwarded to the owner kernel
or gets locally staged, waiting for the ownership to pass to the local kernel.

Even though Popcorn and our boot loader have entirely different goals, they
solve similar problems. We will now compare these solutions to each other.
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Popcorn boots a new kernel instance by sending an IPI to an offline CPU. Our
boot loader keeps the target CPU running, only making Linux believe that it
was shut down. In Popcorn’s case the booted CPU is uninitialized, in our boot
loader’s case it is initialized. Whether it is better to boot an initialized or
uninitialized CPU depends on the use case, Linux expects to be booted on an
uninitialized CPU, whereas writing an experimental kernel is simplified if the
CPU is already initialized. An advantage of our solution is that it is contained
within a kernel module. Both Popcorn and our boot loader restrict memory
through kernel parameters. Device sharing has a different purpose in the two
systems. In Popcorn, the goal is to allow all kernel instances to access a device,
while only one kernel has full control over a device at a time. In our boot
loader, the goal is to let the Rust kernel use devices through Linux, simplifying
its implementation and leveraging Linux’s device support. To this end, handing
a device around between the Rust and the Linux kernel is not necessary, if the
Rust kernel can handle a device on its own then it should get exclusive access to
it. Both systems allow to access devices controlled by another kernel, but they
do so in different ways. Popcorn uses inter-kernel message passing to forward
application requests, our boot loader uses virtio.
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4 Implementation

This section describes the implementation of the boot loader. The boot loader
consists of several software components, their relations are shown in Figure 3.
The kernel module contains the main part of the boot loader: it performs
the boot process, it manages and maps memory, it loads the kernel executable
and it is involved in the notification process of virtio. The user space pro-
gram bootloader_user operates the kernel module through the kernel module
interface and starts the hypervisor-less KVM tool. While a user space pro-
gram like bootloader_user is necessary to operate the kernel module, it does
not add functionality on its own, so it is rarely mentioned in this thesis. The
hypervisor-less KVM tool contains the virtio device implementation and al-
lows the Rust kernel to use the virtio console through Linux. Bare Rust is the
Rust kernel that we use to boot. It is a very simple kernel in the form of a bare
metal Rust program. Bare Rust uses a virtio driver to use the virtio console
provided by the hypervisor-less KVM tool.

The description of the implementation is structured into the following sec-
tions: how Linux is restricted from using all the resources in the system, how
memory for the Rust kernel is managed by the kernel module, how the kernel
code is loaded, how a Rust kernel is booted, what the boot environment looks
like, how the Rust kernel can access devices, in particular the virtio console, and
finally a description of the kernel module interface. The source code is contained
in a git repository, all relative paths mentioned are relative to that repository.

4.1 Resource Restriction

The Linux kernel cannot use the whole system like it usually does, it has to be
restricted to leave resources for the Rust kernel to use. Such a restriction on
CPU and memory can be achieved with kernel parameters during Linux boot.
Our boot process of a Rust kernel takes a CPU used by Linux, restricts the
Linux kernel from using it and boots the Rust kernel on it. So all CPUs can
be handed to Linux when it boots. This is not the case for memory, we restrict
the memory Linux accesses through the kernel parameter mem . mem=1G forces
Linux to only use 1GB of memory. The restricted, remaining part of memory
is not mapped into the kernel logical memory map and the physical address
range does not show up in /proc/iomem. It is possible to map memory in the
restricted memory region into the vmalloc region using the kernel function vmap .
It is necessary that we can map and access the memory we just restricted from
the Linux kernel since we need to copy the Rust kernel there. Being able to
do so does however raise the question whether there are other processes doing
the same. To verify that this is not the case and our restricted memory is truly
restricted, we wrote a QEMU TCG plugin that monitors all memory accesses of
a QEMU virtual machine. The plugin logs any accesses that are within a certain
physical memory range. There are many memory accesses in the restricted
region when grub is booting, but none while Linux is running. If we initiate an
access ourself, it gets properly detected by the plugin. This observation makes
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Figure 3: The software components of this boot loader and the relations between
them.

us confident that restricting memory with the kernel parameter mem does work.

4.2 Memory Management

Linux is restricted from accessing the entire memory, this restricted memory is
intended to be used by the Rust kernel and is managed by the kernel module.
The main goal of this memory management is to prevent usage of memory
that should not be used. The two types of memory that should not be used
are memory managed by Linux, i.e. memory outside of the restricted memory,
and memory used by other Rust kernels. Both cases have the same underlying
problem: multiple kernels believing they have exclusive control over a memory
range, while this is not the case. To prevent these cases, the kernel module
allows to request memory for a Rust kernel. The memory is assigned to the
Rust kernel if the memory is inside restricted memory and was not assigned
before. Not assigning the same memory range multiple times prevents it from
being used by two Rust kernels. But it can also help when booting a single
Rust kernel. If a Rust kernel for example requires two memory ranges, one with
the kernel binary and the other with some initialized data, then these ranges
should not overlap. If the two memory requests accidentally do overlap, then
the kernel module will reject the second request.
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4.2.1 Memory Assignment

For a memory request to be accepted, it needs to be within the restricted mem-
ory and not yet assigned to a Rust kernel. So the memory management needs
to know what memory is restricted and what memory was already assigned.
The memory ranges that are restricted from Linux are passed by the user as
a physical start and end address through a kernel module parameter. Kernel
module parameters can be set when the module is loaded or, if it is built-in the
kernel, through kernel parameters. It would be possible to change kernel mod-
ule parameters after the module is loaded through sysfs [15], but we disallow
that by setting the file permission to read-only to simplify the implementation.
The kernel module stores the restricted memory ranges in a list of memory re-
gion structs (defined in kernel-module/memory.h). Each memory region struct
holds a physically contiguous range of memory that is not allowed to overlap
with other memory region structs.

On a memory request, the kernel module checks whether the requested mem-
ory range is contained in a single memory region struct. If a requested memory
range is contained in two consecutive memory region structs, the check will
nonetheless fail. This simplifies the implementation and can be easily avoided
by not adding consecutive restricted memory regions. Then the kernel module
checks if the memory request overlaps with any of the already assigned mem-
ory ranges in the containing memory region struct. This is done by traversing
the list of assigned memory structs (defined in kernel-module/memory.h) each
struct memory region has. If both of these checks succeed, then the memory
request is successful and the memory range gets assigned. It is stored in the
list of assigned memory structs in the containing memory region struct. The
start and end address of the memory request do not have to be page aligned,
the kernel module will extend the requested memory range to be page aligned.
The difference from the requested start address to the assigned start address is
stored in the field offset of struct assigned memory. So the start and end address
in struct assigned memory are always page aligned. The kernel module fills each
assigned memory range with zeros to prevent previously written content from
reappearing, possibly causing bugs.

4.2.2 Map Memory

The memory management allows to map an assigned memory range in three
different address spaces: in the Rust kernel’s address space, in the Linux’s
kernel address space and in the user space program’s address space. All assigned
memory should be accessible to the Rust kernel, if this is not desired then one
can use the regular memory allocation functionality provided by Linux. So
every assigned memory range gets always mapped in the Rust kernel’s address
space. Because the kernel module needs to overwrite every assigned memory
range with zero, it is also necessary to map them into the Linux’s kernel address
space. A mapping into the user space program’s address space is optional and
depends on how the memory range is used. Each kind of mapping is described
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Linux Macro Permission
PAGE KERNEL read write

PAGE KERNEL RO read
PAGE KERNEL ROX read execute

PAGE KERNEL EXEC CONT read write execute

Table 2: Memory protections for mapping into the Rust kernel’s address space.

in more detail in the following:

Rust Kernel Address Space The function map_into_mm() declared in
kernel-module/memory.h maps an assigned memory range into the new virtual
address space of the Rust kernel. The kernel module creates this new address
space and creates the mappings with this function before the Rust kernel is
booted. For each mapping, it sets the virtual address to the same value as
the physical address, resulting in identity mappings. The new virtual address
space is described in more detail in Section 4.5.1. A mapping is made with
a memory protection which is specified by the memory request. The memory
protection determines the permission by which the memory range will be avail-
able in the Rust kernel. Since we use Linux functions to create and set up the
page tables, we also use Linux macros to describe the memory protection. The
memory protections the kernel module allows for the Rust kernel address space
are listed in Table 2. Even though the kernel module allows the memory pro-
tections PAGE KERNEL RO and PAGE KERNEL ROX, they do not actually
prevent the Rust kernel from writing into such memory ranges. But it is impor-
tant to choose an executable memory protection if one wants to load code that
should be executed. Otherwise executing such code will result in a Linux kernel
panic. We use the memory protection PAGE KERNEL EXEC CONT because
we always map physically contiguous memory.

The kernel module implementation currently does not provide a way to free
the page tables of mappings in the Rust kernel address space. The reason is that
Linux functions that unmap memory (like vm_munmap() ) require the mappings to
be tracked in vm area struct structs, however these structs are not set up with
the functions we use to create the mappings. There is no Linux function that just
creates such vm area struct structs, so creating them manually would require
copying code from the Linux kernel. Alternatively one could use the Linux
function _install_special_mapping() to create the mappings, which creates the
required vm area struct structs. This function uses demand paging, so it would
be necessary to populate the mappings before booting the Rust kernel. We did
not implement mapping memory with this function due to time constraints.

Linux Kernel Address Space The function map_with_vmap() uses the Linux
function vmap() to map into the kernel address space of Linux. vmap() chooses a
free range of virtual addresses in the vmalloc region of the Linux kernel and maps
the memory there. The new pointer pointing to the virtual address is stored in
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the assigned memory struct, this allows other parts of the kernel module to use
that mapping and access the assigned memory. When the memory is released,
the pointer is used to free the mapping. Apart from setting memory to zero
when it is assigned, the kernel module currently uses these mappings in the
notify device to access the shared polling memory (see Section 4.6.5) and when
loading an ELF executable (see Section 4.3).

User Space Program Address Space An assigned memory range gets
mapped into the address space of a user space program only when the program
instructs the kernel module to do so via an mmap system call. The user space
program has to choose the MAP SHARED flag for the mmap system call, be-
cause the memory will always be shared with the Rust kernel. The flag ensures
that writes change the underlying memory and are visible to other processes.

The kernel module does not unmap mmapped memory when the assigned
memory is released. To unmap it, the lower part of virtual memory belonging
to user space would have to belong to the user space program that initiated the
mmap. This is not necessarily the case, especially in the current implementation
where the only way to release memory is to unload the kernel module. So the
user space part of virtual memory will always belong to an rmmod process.
Since the kernel module does not unmap or track mmapped memory, the user
space program is responsible of not using mmapped memory after the assigned
memory was released. Otherwise it could interfere with a new Rust kernel that
requested this memory.

4.2.3 Detect Restricted Memory

The kernel module currently gets the restricted memory range from the user
via a kernel module parameter (as described in Section 4.2.1). It would be
convenient if the kernel module would detect the restricted memory range on
its own. However there are at least two ways to do so, through the device tree
or the UEFI memory map, depending on how the system is set up. There might
even be system setups where neither of these work. So we decided to let the user
specify the restricted memory range, because this will always work and gives
the most flexibility. The current implementation could be extended to offer an
automatic restricted memory detection that works on some systems. We will
sketch out how this could be done for a memory map defined by a device tree
or by UEFI.

To detect the restricted memory range, the kernel module has to know the
entire memory available in the system and subtract the memory available to the
Linux kernel. The memory available to Linux can be found in the file /proc/

iomem. The information of this file can be accessed from the kernel module with
the Linux kernel function walk_iomem_res_desc() . How to get the entire memory
available is dependent on how the memory map of the system is handed to
Linux. If the memory address ranges are stored in a device tree, one can use
of_find_node_by_name() to find the device tree node and of_find_property() to
find the property of the node containing the address range. If the available

15



memory address are stored in an UEFI memory map, one can use the function
for_each_efi_memory_desc() to iterate over the descriptors in the UEFI memory
map. Some of these descriptors describe memory that is used after boot by the
UEFI runtime, so one should check the memory type and only use those that are
not reserved [16]. The Linux function is_usable_memory() is used by the Linux
kernel to check whether a descriptor is usable.

4.3 Load Kernel Code

One step in booting a kernel is to load its code into memory. The kernel module
provides the functionality to load an ELF executable. An ELF executable has
segments that need to be loaded into memory. Each segment specifies a virtual
address where it expects to be loaded. The kernel module requests memory
at that virtual address, maps it into the kernel’s vmalloc region and copies
the segment into it. The Rust kernel gets its own virtual address space with
an identity map (see Section 4.2.2), so the virtual addresses specified by the
ELF executable will correspond to the physical addresses. As a consequence,
the addresses where the ELF segments expect to be mapped need to be valid
physical memory addresses that are not used by Linux or already requested from
the kernel module. So it is not possible to load the same ELF executable twice,
because it will request the same memory regions from the kernel module twice.
The appendix of this thesis describes how to change the ELF base address in a
Rust project in order to use valid memory regions. Creating ELF executables
from the same code with non overlapping memory regions allows to load it
multiple times.

Instead of changing the ELF executable’s virtual addresses, one could forgo
the identity map of the Rust kernel’s virtual address space and instead allow
the user to pick the virtual address. It does not matter if two ELF executables
use the same virtual addresses as long as the physical addresses are distinct.
Another solution would be to support Position Independent Executables (PIE)
and relocate them to valid addresses.

The ELF loader that parses and loads the ELF executable is taken from Bar-
relfish [17]. The kernel module implements the memory allocator that provides
the ELF loader with memory. The source code of the ELF loader is located in
kernel-module/elf/. The ELF loader does not need to be in the kernel mod-
ule, so it would actually be better if it was contained in a user space program.
The reason why we put it in the kernel module is that we did not have a user
space program at the time. We did not change it afterwards since moving the
ELF loading functionality to the user space program does not bring additional
functionality.

4.4 Boot Kernel

A kernel needs, like any piece of code, a CPU core to run on. To get a clean
separation between Linux and the Rust kernel, we want to remove a core from
Linux and dedicate it to the Rust kernel. Linux has to believe that the core is
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unavailable, otherwise it could interfere with the Rust kernel. There is a mech-
anism to turn CPUs on or off at runtime in Linux called CPU hotplug. Linux
will not interact with a turned off CPU and ignore it until it gets instructed
to turn the core back on. Turning a CPU off with CPU hotplug does, among
many other things, mark the CPU as offline and migrate tasks and IRQs away
to other cores. So the idea is to use this turn off mechanism, without actually
powering the CPU down. Linux will treat the core as offline, even though it is
actually still running.

Apart from making Linux ignore the core, we also need to get the Rust kernel
to execute on the core. At first we intended to spawn a kernel thread which will
do the jump into the kernel image. To ensure the kernel thread was in control
of the CPU at the time of the jump, we copied and altered code from the core
shutdown process, which prevented a full core shutdown (see Section 4.4.3 for
more details). So in the end we instead made the idle thread perform the jump,
which allows us to do a clean core shutdown.

4.4.1 Boot Process

Linux running on arm64 uses the Power State Coordination Interface (PSCI) to
shutdown a core. Two PSCI functions are used: CPU OFF to power the calling
CPU off and AFFINITY INFO to verify that the CPU was actually turned off.
Linux calls CPU OFF on the idle thread of the target CPU, this should be
the last statement to execute on this CPU, Linux expects this function call to
never return. The function call is done through a function pointer to CPU -
OFF stored in a struct, so we can replace the actual CPU OFF function with
our own function. This allows us to prevent the call to the PSCI and thus
prevent the shutdown of the core. Additionally this also gives us the perfect
opportunity to jump into the kernel image. Linux does not expect this function
to return anyways and performed all statements it wants to perform on the core
beforehand. Since we execute the jump on the idle thread instead of a kernel
thread, there will not be a never exiting kernel thread leaving a task struct in
the Linux kernel. The idle task is expected to be stopped by the CPU shutdown,
its task struct would be reused for the new idle thread when the CPU is turned
on again. The remainder of the CPU shutdown process takes place on another
CPU. At some point it will use the PSCI function AFFINITY INFO to check
whether the target CPU was actually powered off. Again this function call is
done through a function pointer, which we again replace with our own function
that always reports a successfully powered off CPU. From there on Linux does
the remaining part of shutdown process.

To summarize what we do, we replace the two functions CPU OFF and
AFFINITY INFO with our own functions, then instruct Linux to shut down
the target core. Afterwards we restore the original functions again. These
relatively minor adjustments allow Linux to perform the complete shutdown
process of a core and make that core execute a binary. Since we do not touch
most of the shutdown process, this solution should be quite robust to changes
made to it. As we instruct Linux to shut down the target core, it marks the
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core as offline. The kernel module only allows to boot on cores that are marked
online. Instructing Linux to turn on a core that is marked offline because we
booted on it earlier will fail, as the core did not actually shut down and is still
executing. If however the core did shut down because the Rust kernel called the
CPU OFF function itself, then Linux will be able to turn the core on again. It
will be marked as online and can be used for future boots.

There is however an unclean part to this implementation, the struct that
stores the PSCI function pointers cannot be directly accessed from a kernel mod-
ule. We circumvent this restriction by using the function kallsyms_lookup_name()

which returns the address of a symbol. While this method does allow us to ac-
cess the struct, it is a bit of a hack, especially since the function is not exported
to kernel modules from Linux 5.7 on. But even in newer Linux Kernel versions
it is apparently possible to use kprobe to get access to kallsyms_lookup_name()

from a kernel module.But it seems to be necessary to use kallsyms_lookup_name()

since almost no functions and fields used for CPU hot-plugging are exported to
kernel modules.

4.4.2 Verification

We tested the implementation by making it launch a small assembly program
on the new CPU. It stores a value at a memory location and we observed the
change from a kernel thread on Linux. While this observation shows that the
code we jump to does execute, it does not show whether there is any other code
from Linux executing on that CPU. To verify that this is not the case, we wrote
a QEMU TCG plugin that logs all statements executed on the target CPU.
Running the kernel module in a QEMU VM with this plugin showed that the
only instructions executed on the CPU are the ones of the assembly program
we launched. So we know that the implementation successfully isolates a core
from Linux.

4.4.3 Old Implementation using a Kernel Thread

An earlier implementation jumps to the Rust kernel from a kernel thread instead
of the idle thread. The kernel thread is spawned and bound to the target
core. The kernel module runs on a different core and starts the CPU hotplug
shutdown process. It follows the process up to the point where Linux would
normally invoke the core local stopper thread to perform some shutdown tasks,
one of them being migrating all threads in the runqueue to other cores. After
the stopper thread is done, there are no other threads left on the CPU and the
idle thread takes over and actually shuts the CPU down. So if we invoke the
stopper thread, we will not be able to run the kernel thread we spawned in the
beginning on the target core. So in order to pass control to the kernel thread,
we do not invoke the stopper thread and instead let the kernel thread do the
work of the stopper thread. After the kernel thread is done with that, it turns
off the local IRQs and jumps into the Rust kernel. This prevents the idle thread
from being run and shutting down the CPU.
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This implementation has some downsides compared to the one we use, de-
scribed in Section 4.4.1. We copied chunks of Linux kernel code in order to
change the behavior, which results in code duplication and makes the kernel
module harder to maintain, since every change in the CPU shutdown process
of the kernel code would need to be copied into the kernel module. It also re-
sults in 15 function calls to functions not accessible to kernel modules. These
functions and one struct have to be looked up with the kallsyms_lookup_name()

function. This is additionally unstable since some of these functions are static,
so if the kernel compiler decides to inline any one of them, then it cannot be
found by kallsyms_lookup_name() . This implementation also deviates more from
the actual shutdown process than the implementation we use, as the stopper
and the idle thread are never invoked. As a consequence, we could not do the
complete CPU shutdown process, so we stopped in an intermediate state. The
kernel thread never correctly exits from Linux’s point of view, which in turn
prevented the kernel module from being unloaded and was maybe the reason
why Linux printed warnings about the CPU being stalled by the kernel thread.
This implementation does give more control than the implementation we use,
as there are more places in the shutdown process where we could add code.

4.5 Boot Environment

We describe the boot environment of a freshly booted Rust kernel in this section.
First we describe the general environment, then the virtual address space of the
Rust kernel and finally how the boot environment can be modified in the Linux
kernel module before control is handed over to the Rust kernel.

The boot environment after passing control to the Rust kernel is in general
similar to the Linux kernel environment, since the jump is executed from the
context of a Linux idle thread. The exception level is the same as the one Linux
is running in. Interrupts are disabled, but the exception vector table is the
same as the one used by Linux. As a consequence, if the Rust kernel causes
a fatal exception, like a null pointer exception, then the Linux kernel panics.
This is not necessarily bad, as a Linux kernel panic prints useful debugging
information, like the type of exception and the values of registers. To prevent
the Linux kernel from panicking and to handle exceptions itself, the Rust kernel
will need to set up its own exception vector table. The MMU is enabled, with
a new virtual address space created by the Linux kernel module. Caches are
enabled as well. The stack pointer points to the kernel stack of the former idle
thread. This stack is not used anymore since the Rust kernel overtook the idle
thread during boot (see Section 4.4.1). However, since the stack is located in
Linux kernel memory, the Rust kernel should refrain from using it and set up a
proper stack in its own memory.

4.5.1 Virtual Address Space

The Rust kernel runs in its own virtual address space set up by the Linux
kernel module. This virtual address space consists of identity mappings, so
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each virtual address has the same value as the physical address it maps to. All
memory assigned to the Rust kernel is mapped in this address space. The page
tables are allocated by Linux using the pte_alloc_map() and friends functions
(see map_vaddr_to_page() at kernel-module/module_main.c). These functions
allocate memory from the buddy allocator with the alloc_page() function. So
the page tables are in memory managed by the Linux Kernel, the kernel module
does not track their location so the Rust kernel is not expected to access or
modify the page tables. We think that this restriction is fine, a simple kernel
can use the mapped pages without bothering with paging at all, whereas a more
advanced kernel sets up its own page tables and discard the page tables set up
by Linux when it is done. Alternatively, if the need arises to access the page
tables allocated by Linux, one could rewrite the pte_alloc_map() functions to
use memory managed by the kernel module and assign it to the kernel kernel.

The kernel module installs the page tables created by Linux in the TTBR0
register, so the address space is in the lower part of virtual memory usually
used by user space applications. TTBR1 holds the value of the Linux kernel
page table, so the upper part of virtual memory maps to Linux kernel memory.
The reason for putting the Rust kernel’s address space into TTBR0 is to make
the jump into the Rust kernel code easier. Just before performing the jump,
the kernel module sets TTBR0 to the new page table. The kernel module is
running in Linux kernel virtual memory, so setting TTBR0 does not affect it. If
we would instead change the value of TTBR1, then we would have to make sure
that the currently executing instructions are mapped in the new address space
as well, otherwise the program counter would suddenly point at a completely
different location in memory, depending on where the new address space maps
the virtual address. A kernel that sets up its own page tables can use the same
approach the other way around: it prepares the page tables while running in
the address space set up by the Linux kernel module. When it is done, it can
set the TTBR1 register without affecting itself, since it is still running code
mapped in TTBR0 page tables. Then it can jump to code mapped in TTBR1
page tables and stop using the old address space. However, this only works if
the Rust kernel does not use any memory of the Linux kernel anymore. So it
has to set up its own stack and exception vector in its memory.

4.5.2 Modifying the Boot Environment

Different kernels require different boot environments, so we cannot accommo-
date all of them. In this section we describe how the boot environment can
be modified to suit a specific kernel. Such modifications could for example be
setting registers to an address to pass boot parameters, setting up an exception
vector, changing the configuration of timers or disabling the MMU. There are
two places in the kernel module’s code that are interesting for modifying the
boot environment: my_cpu_off() and boot_kernel_image() .

The function my_cpu_off() performs the jump into the Rust kernel. It is
called during the CPU hotplug shutdown process on the CPU on which the
kernel will boot, in the context of the CPU’s idle thread. So in this function
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one could modify the state of the boot CPU just before handing control to the
Rust kernel, like setting registers to certain values or disabling the MMU.

The other function boot_kernel_image() initiates the CPU hotplug shutdown
process. It can execute on any of the CPUs that are currently marked as online
in Linux. The Rust kernel’s virtual address space is initialized at this point.
While this function is less useful than the previous one for modifying the boot
environment, it could be used for more general changes like modifying the Rust
kernel’s virtual address space.

4.6 Accessing Devices

After a successful boot, the Rust kernel will want to use devices present in the
system. If the Rust kernel has a driver for a device, then it can use the device
directly. But if it does not, then the driver would have to be implemented. Linux
already has such a driver, so instead of implementing the driver again, the Rust
kernel could use the device through Linux. By allowing the Rust kernel to use
devices through Linux, it can use all devices that are supported by Linux. We
decided to implement such a mechanism with virtio. We use virtio because there
is no need for us to implement a similar mechanism from scratch and because
there is a high potential for code reuse, since virtio is a known standard. As
described in Section 2.3, the virtio driver and the virtio device are independent
of the physical device. So by adding the generic virtio driver and virtio device
for a device type, all physical devices of that type can be used. This makes
the Rust kernel much more portable. As an additional benefit, virtio allows to
share a device and use it from both the Rust kernel and Linux.

In this section, we will first briefly describe how a Rust kernel could access a
device directly. The remainder of the section is dedicated to describe the virtio
implementation that allows the Rust kernel to use a device through Linux.

4.6.1 Access a Device Directly

In this section, we describe how the Rust kernel could use a device directly
if it has the corresponding device driver. This is faster than using the device
through Linux, as the communication over virtio is not needed. However it is
less portable than using virtio, the Rust kernel will need a driver for each device
it should support.

If the Rust kernel can use a device directly with its own driver, then Linux
has to be prevented from accessing the device. Drivers work under the assump-
tion that they have exclusive access to a device. So if both Linux and the Rust
kernel run a driver for one device, then they will interfere with each other. The
device driver of Linux can be disabled by unloading its kernel module. Then the
Rust kernel driver has exclusive access to the device and can operate it without
interference. If the Rust kernel does not have a driver to operate a device, but
it needs to use the device directly, then another option would be to simplify
the implementation and leave the initialization to Linux. The device driver of
Linux could be modified to not shut down the device when it is unloaded. Thus
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the device stays in an initialized state, allowing a Rust kernel driver to skip
initialization and operate the device straight away.

4.6.2 Virtio Overview

Virtio is usually used with a hypervisor host, running the virtio device, and a vir-
tual machine guest, running the virtio driver. But we have two kernels running
on the same machine on the same exception level, so we have to adapt virtio.
In the following sections, we describe the shared memory region between virtio
device and virtio driver and how MMIO and notifications are implemented. In
the end we describe the changes that were necessary in order to support the
virtio console.

There are already several virtio implementations, so we reduce the work by
not implementing the standard from scratch, but rather reuse and adapt an
existing implementation. For the virtio driver, running on the Rust kernel, we
use the Rust virtio driver implementation [18] from the rCore OS project. For
the virtio device, we use the hypervisor-less KVM tool from OpenAMP which
we described in Section 2.3.2. Since we do not use virtualization, we will not
refer to the two actors as host and guest, but instead refer to them by the name
of the software that runs on them, namely virtio device and virtio driver.

The virtio device type we decided to implement is the virtio console. Having
a console on the Rust kernel is useful for printing debugging information, espe-
cially in the early stages before a kernel can set up its own console. However,
implementing a simple UART driver would be easier than implementing a virtio
console. The virtio console has the advantage that implementing it once allows
to use any UART device supported by Linux. In addition, the virtio console
is more versatile, because it uses the virtio device’s standard input (stdin) and
standard output (stdout). This allows for example to use the virtio console over
ssh or to redirect its output into a file.

4.6.3 Shared Memory

Virtio uses data structures that are shared between host and guest. Most of
these data structures are allocated by the virtio driver. It can choose the location
freely in its own memory, as the virtio device runs on the hypervisor and can
access all of the guest’s memory. The hypervisor-less KVM tool drops the
assumption that the virtio device has full access to the virtio driver’s memory.
Instead it adds the concept of a shared memory region that is accessible by
both. All shared data structures must be inside this shared memory region.
We decided to keep this concept of shared memory, because it gives us a clean
separation of memory shared between Linux and the Rust kernel and memory
exclusively used by one of them. In regular virtio, the virtio driver can allocate
data structures anywhere, for example on its stack, making it much harder to
track which memory is shared and which is under exclusive control of the Rust
kernel. In this section we describe this shared memory concept in more detail.
This concept was created by the hypervisor-less KVM tool, we did not make any

22



changes to it. We only adapted the Rust virtio driver to support this concept
as well.

The location and size of the shared memory region is set by the command line
arguments of the hypervisor-less KVM tool. It maps the shared memory into its
address space and allocates the requested devices. Figure 4 shows the memory
layout of the shared memory region. Every device gets its own range inside
the shared memory where all its data structures reside. The size of this range
depends on the virtio device type, because the virtio device type determines how
many virtqueues are used. At the beginning of each of these shared memory
ranges, the hypervisor-less KVM tool initializes the MMIO registers. In order to
pass the location and size of the shared memory range of the device to the virtio
driver, it is written in four of these MMIO registers. These registers are not part
of the virtio standard. They are located at addresses in the MMIO range that are
currently not used by the virtio standard. The concrete layout of the MMIO
registers used by the hypervisor-less KVM tool is defined in the header file
kvmtool/include/kvm/virtio-mmio.h in struct virtio_mmio_hdr . The virtio
driver sets up the number of virtqueues required by the virtio device type. As
described in Section 2.3.1, the information that is passed through a virtqueue
is contained in buffers. The virtio driver must place the virtqueues and their
buffers inside the shared memory range of the device. It can decide where to
place them inside the device’s shared memory range, as long as they do not
overlap with the MMIO registers.

The current implementation does not inform the virtio driver where the
MMIO registers are located in memory. We currently just hard code the address
of the virtio console MMIO into the Rust kernel. One way to avoid that and
pass the MMIO address in a more elegant way could be to use the device tree
shown at the top of the shared memory region in Figure 4. This device tree is
set up by the hypervisor-less KVM tool. We did not inspect this device tree, so
we do not know what information it contains, but it could contain the address
of the MMIO registers of the virtio devices.

4.6.4 MMIO

The virtio standard defines three transportation modes: MMIO, PCI and chan-
nel I/O (see Section 2.3.1). We use virtio over MMIO, such that the Rust kernel
does not need support for PCI. Alternatively, virtio over channel I/O could be
used, we decided to use virtio over MMIO since we found more existing im-
plementations that use it. As we are dealing with virtual devices, they do not
have real MMIO. Instead we use regular memory in the shared memory region
to emulate MMIO. Since we are not in a virtualization context, an access to
MMIO cannot trap and pass control to the virtio device running on a hyper-
visor. So we use notifications to inform the virtio device of MMIO accesses.
We will first describe the implementation, then point out how we modified the
hypervisor-less KVM tool and the Rust virtio driver.

The virtio driver sends a notification after an MMIO access. The virtio
device can then review the change to the MMIO registers and update its state
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Figure 4: Memory layout of the shared memory region. Yellow items are set up
by the hypervisor-less KVM tool, blue items by the virtio driver.

accordingly. To lower the number of notifications, we do not send one when
reading the value of a register. As a consequence, the virtio device cannot
react to an MMIO read, thus all MMIO registers must have the current correct
value. So after every write to an MMIO register, the virtio driver sends a
notification causing the virtio device to update its state and, if necessary, change
the values of MMIO registers. There are cases where changing the value of
one MMIO register requires the virtio device to change multiple other MMIO
registers. One of these cases is the QueueSel register, which, as described in
Section 2.3.1, causes four other MMIO registers to change their values. So the
virtio driver has to block on a write notification to give the virtio device enough
time to update the MMIO registers. Otherwise the virtio driver could read
the old value of an MMIO register before it was updated by the virtio device,
leading to a race condition. To inform the virtio driver that the MMIO registers
are updated and it can continue its execution, the virtio device sends a ready
notification. Therefore our implementation of emulating MMIO requires two
new notifications not part of the virtio standard: one to inform the virtio device
of a write to MMIO and the other to release the virtio driver from blocking.

We will now describe the changes we made to the hypervisor-less KVM
tool and the Rust virtio driver. The Rust virtio driver is written for regular
virtio, so it does not contain any of the described measures. So we added
sending a notification after writing into an MMIO register and waiting for a
ready notification. The function that updates the MMIO registers was already
implemented in the hypervisor-less KVM tool, we just made a minor change to
it to update an MMIO register correctly. The hypervisor-less KVM tool calls
this MMIO update function when it receives a message from the virtio driver,
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Variable Sender Description
host notify driver driver wrote to MMIO and it should be updated
host ready device MMIO is updated, driver can proceed
guest notify device virtio notification to driver
guest msg driver driver debug message (64 bit number)

guest msg ack device debug message was read by notify device

Table 3: Description of the variables used for notifications by polling.

however it does not send a ready notification back, so we added that. We are not
sure whether the hypervisor-less KVM tool implemented a blocking mechanism
as we did, but we did not find an equivalent to a ready notification that we
send.

4.6.5 Notifications

The virtio standard specifies that the virtio device sends notifications to the
virtio driver. It uses a dedicated interrupt signal to do so. We have not setup the
exception vector on the Rust kernel, so it cannot receive interrupts. Instead our
implementation sends and receives notifications by polling on shared memory.

In our implementation, it is not just the virtio device that sends notifications,
but also the virtio driver. So both virtio device and virtio driver poll to receive
notifications. The Rust kernel performs the polling itself, on the Linux kernel
it is performed by the kernel module via a character device called notify device.
We implement polling with a character device because the hypervisor-less KVM
tool does so as well. As described in Section 2.3.2, the hypervisor-less KVM tool
performs system calls on the character device file to send and receive notification.
We cannot reuse the character device of the hypervisor-less KVM tool because
it is platform dependent. But by implementing our own character device and
using the same interface, we do not need to make changes in the hypervisor-less
KVM tool for sending and receiving notifications. Another advantage is that
encapsulating the notification mechanism in a character device makes it easier
to add a new notification mechanism in the future, like IPI.

There are five variables that we use for polling, defined in the header file
kernel-module/notify_dev.h in struct notification_shared_mem . They are de-
scribed in Table 3. Each variable is exclusively written to by either the virtio
device or the virtio driver, the other polls on it. To send a notification, the
sender increments the variable. The receiver polls on the variable and reacts to
a change of its value.

On the Linux kernel side, the notify device sends a notification on a write
system call. If the count parameter of the write system call is 10, it increments
the host_ready variable, otherwise it increments the guest_notify variable.
We chose the value of 10 arbitrarily, we just needed a simple way to differentiate
these two kinds of notifications. To poll on the host_notify and the guest_msg
variables, the notify device uses a kernel thread. This kernel thread is spawned
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when the notify device file is opened and stopped when the file is closed. The
notify device file can only be open once at a time. The hypervisor-less KVM
tool uses a thread to make a poll system call on the notify device file. The
notify device puts the thread to sleep and wakes it up if there is a change in
the host_notify variable. To prevent missing a notification, the notify device
counts the number of received notifications. This number is increased when
receiving a notification and decreased when waking up a thread that made a
poll system call. So if there is currently no sleeping thread, then the next thread
making a poll system call will not sleep but return immediately. The guest_msg
variable is intended for debugging messages, a change of this variable causes the
new value to be printed in the kernel log.

On the Rust kernel, the kernel has to poll for changes by itself, if it supports
threads then it can poll from a thread as well, otherwise it has to use its main
thread to do so. Bare Rust for example starts polling to receive console input
with its main thread after printing a message to the virtio console. As described
in Section 4.6.4, the virtio driver needs to block after writing to MMIO until the
virtio device is done with updating the MMIO. So after a write to an MMIO
register, the virtio driver increments the host_notify variable. Then it has to
poll on the host_ready variable.

The poll memory is shared between Linux and the Rust kernel. However it
is not in the shared memory region described in Section 4.6.3. The reason for
not putting the poll memory into the shared memory region is that we wanted
to isolate the polling notification mechanism from the hypervisor-less KVM
tool. It should be possible to implement a different notification mechanism
without needing any changes in the hypervisor-less KVM. If it was embedded
in the shared memory region, then the hypervisor-less KVM tool would need to
allocate it, thus depending on the notification mechanism.

4.6.6 Implementing the Virtio Console

In this section we describe the virtio console specific changes we had to make in
order to support it. We made changes to the hypervisor-less KVM tool and the
Rust virtio driver. We expect that these changes will have to be applied again
when adding support for another virtio device type, so we describe them here
to simplify the process.

Hypervisor-less KVM tool According to the virtio standard, during ini-
tialization of a virtqueue the driver can choose the size of the virtqueue, as long
as it is smaller than the maximum size chosen by the device. However, the origi-
nal hypervisor-less KVM tool implementation ignores any virtqueue size chosen
by the virtio driver and uses a hard-coded size. The size of a virtqueue defines
its memory layout, so they have to match in order for the virtqueue to work
properly. One could either make the driver choose the size hard-coded in the
hypervisor-less KVM tool or change the hypervisor-less KVM tool to use the
size chosen by the driver. We used the second approach for the virtio console
device since it follows the virtio standard more closely.
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The function virtio_mmio_notification_out() updates the emulated MMIO
registers in shared memory. The original hypervisor-less KVM tool implemen-
tation did not update the QueuePFN register correctly when a new queue was
selected with the QueueSel register. So we modified the function to update the
register properly.

As described in Section 2.3.1, each virtqueue is identified by a virtqueue
number. The get_vq() function takes such a virtqueue number and returns the
struct of the corresponding virtqueue. Due to changes we made, this function
can be called with an invalid queue number, which is not handled in the original
implementation and causes an array access outside of the array’s bounds. We
decided to change the get_vq function and check whether the virtqueue number
is valid and return NULL if it is not.

Rust virtio driver As described in Section 4.6.3, we specified that the mem-
ory shared between virtio device and virtio driver must be in the shared memory
region. Thus the virtio driver must allocate all shared data structures inside
the shared memory region. We added the SharedMemory struct to the Rust virtio
driver, which hands out pages in the shared memory region. It is initialized
by the VirtIOHeader.shared_memory() function. So one can use the SharedMemory

struct to allocate the virtqueues and their buffers.

4.7 Kernel Module Interface

The kernel module is designed to be used with an user space program. So it
needs a kernel module interface that allows a user space program to pass control
to the kernel module to perform actions that are not possible from user space,
like mapping memory or booting a Rust kernel. Linux provides several ways
to implement such an interface, so we briefly describe the options and then
motivate why we chose to use a procfs based interface. Adding a new system
call is not an option since we do not want to modify the kernel outside of the
kernel module.

procfs A virtual file system usually mounted at /proc. A kernel module can
create directories and files in procfs and define file operations for those files.
A user space program can make system calls on these files which cause the
corresponding file operation to be executed. Procfs allows to use general file
operations, this makes it flexible by allowing to use special operations like ioctl
and mmap.

sysfs and configfs Virtual file systems, usually mounted at /sys and
/config. Both allow to show information and modify kernel objects. They
complement each other, sysfs is used for kernel objects created by the kernel
and configfs is used to allow user space to create and delete kernel objects.
Files in these file systems represent attributes of objects, each file should only
contain one value. User space can make read and write system calls on these files
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to interact with them, other operations are not allowed. In configfs objects
can be created with mkdir and rmdir.

netlink A socket based interface that allows to send messages between kernel
and user space processes. A user space program uses the interface like a regular
socket, a kernel module uses an internal kernel API.

We decided to make a procfs based interface. The main reason being that it
is easier to set up and use than the other two options. It is also more flexible
by allowing ioctl and mmap. The downside is that procfs should be used for
process related information, it is encouraged to use sysfs for other information.
An alternative would be to use a combination of sysfs and configfs. Using
sysfs on its own would not work well because it is the user space program
that initiates the creation of objects like a memory range. However using only
configfs would make it hard for the kernel module to create objects visible to
the user, for example creating memory ranges when loading an ELF executable.
So we would need to use both sysfs and configfs, spreading the files to two
different locations. A major downside is that neither of these file systems sup-
port mmap, so to access memory the user would have to perform a read or write
system call on every access. Using mmap allows to map the memory into the
user’s virtual address space, so no further system calls are necessary to access
the memory. Netlink would be similarly flexible as procfs with ioctl, however
it is much more work to set up, one reason being that it would require us to
define a message format.

4.7.1 Kernel Instances

The kernel interface should allow to setup and boot more than one kernel. To
manage multiple kernels, the kernel module separates each kernel into a kernel
instance. The user can create and perform actions on kernel instances. Each
kernel instance represents one Rust kernel and has its own resources assigned.
These resources are not allowed to overlap with other kernel instance’s resources.
The resources a kernel instance currently tracks is assigned memory and notify
device. If the kernel instance is deleted, the assigned resources are released.
Currently the only way to delete a kernel instance is to unload the kernel module,
which causes the deletion of all kernel instances. One could add a ioctl to delete
a single kernel instance in the future. Releasing a kernel instance’s assigned
memory can be dangerous, as the booted kernel could still be using that memory.
The problem occurs when the memory gets assigned again, which sets it to
zero. So if the old kernel still uses that memory, a null pointer or an invalid
instruction exception will likely occur. If the Rust kernel did not replace the
exception vector, then such an exception will cause a Linux kernel panic. To be
safe, the Rust kernel has to stop execution by calling the PSCI function CPU -
OFF before releasing memory. A convenient place to call CPU OFF is inside
the Rust kernel’s panic handler, which needs to be defined in a bare metal Rust
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program. CPU OFF has to be called on the CPU to be turned of, so it has to
be called by the Rust kernel.
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5 Kernel Module Interface

The kernel module provides the functionality to boot a kernel. This section
describes the interface through which a user space program can access said
functionality. The userspace program interacts with the kernel module through
files in the procfs file system. The kernel module creates these files and direc-
tories in /proc/bootloader_lkm/. For every kernel that should be booted, the
user creates a kernel instance. The user can then instruct the kernel module
to perform actions on this kernel instance, like adding memory to it, loading
a kernel or booting the kernel. For each kernel instance, the kernel creates a
directory, named after the instance, in /proc/bootloader_lkm/. This instance
directory will contain the files relevant for this instance.

The kernel module interface can be divided into two parts: the general
interface (Section 5.2) and the instance interface (Section 5.3). The general
interface is independent of any kernel instance and controls the kernel module
overall. The instance interface controls a specific kernel instance.

5.1 Ioctl

Both the general interface and the instance interface are mainly controlled
through ioctl system calls. An ioctl is registered and identified by a command
number, which in Linux is generated from three constants [19]. A user space
program needs to use the same constants to end up with the same command
number. The constants of each ioctl the kernel module supports are listed in the
header file kernel-module/procfs.h. This header file also contains the defini-
tions of the structs that are passed as arguments with the ioctl. We prefixed
some fields of these structs with "ret_". They are intended to be return values
from the kernel module and get overwritten by it if the ioctl is successful. If an
ioctl fails, then it could help to check the kernel log for messages printed by the
kernel module. They are often more useful than the error code returned by an
ioctl.

5.2 General Interface

The general interface allows to control the overall state of the kernel module.
This can happen in two ways: passing parameters to the kernel module or
making ioctl system calls. Ioctl system calls for the general interface target
file /proc/bootloader_lkm/module_control, which is created when the kernel
module is loaded. The general interface currently supports one kernel module
parameter and one ioctl:

Parameter: Memory This parameter allows to specify the memory ranges
reserved for the kernel module. It takes an array of pairs of memory addresses,
the first address specifying the start and the second address specifying the end
of a memory range. For example, if one wants to pass the two memory ranges
start1-end1 and start2-end2, the kernel module parameter would look like
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this: memory=start1,end1,start2,end2 . These addresses are physical addresses and
must be page aligned, the end address points to the last byte in the memory
range. Linux has to be restricted from accessing the memory ranges passed with
this parameter. Section 4.1 describes how to use a kernel parameter to restrict
Linux from using the entire memory. The memory ranges currently usable by
Linux are the memory ranges named System RAM in file /proc/iomem. By
booting Linux twice, once normally and once with memory restriction, and
comparing the content of /proc/iomem, one can find out which memory ranges
disappear in the memory restricted case. These memory ranges are the ones
not accessible to Linux and can be passed to the kernel module.

Ioctl: Create Instance The ioctl IOCTL ROOT CREATE INSTANCE
creates a new kernel instance. The user has to provide the name of the new ker-
nel instance and the length of the name. The maximum length is 255. The kernel
module will create the instance directory in /proc/bootloader_lkm/, contain-
ing one file called instance_control. This file allows to control the new kernel
instance, see the following Section 5.3. Creating two kernel instances with the
same name will fail.

5.3 Instance Interface

The instance interface allows to control a specific kernel instance. Every kernel
instance has a instance directory in /proc/bootloader_lkm/, this instance di-
rectory contains a file called instance_control. An instance can be controlled
by calling ioctl system calls on this file. The following ioctls are available:

Request Memory The ioctl IOCTL INSTANCE MEMORY REQUEST re-
quests a memory range and assigns it to this kernel instance. All memory
successfully requested will be mapped into the virtual address space of the ker-
nel of this instance. The call requires three arguments: the start and the end
address of the memory range and the memory protection. The start and end
address are physical addresses. Since the virtual address space is a identity
map, they will correspond to the instance’s kernel’s virtual addresses. The end
address points to the last byte included in the memory range. The start and end
address do not need to be page aligned. The memory protection determines the
permission by which the memory range will be available in the new kernel. They
are described by macros defined in <sys/mman.h>, the same macros that are
used by the mmap system call. The permission combinations accepted by the
kernel module are listed in Table 2. Note that even though the interface allows
to choose a read-only protection, writes to such memory are not prevented.

The memory request will fail if the requested memory range is not inside
one of the memory regions available to the kernel module. It will also fail if it
overlaps with any of the previously requested memory ranges, including those
requested by different kernel instances. If the memory request is successful, the
kernel modules creates a file representing the new memory range in the instance
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directory and returns the memory number. The name of this file will start
with “mem-” followed by the memory number, so the user can append memory
number to recreate the file name. Reading the file will print the start and end
address of the memory range. If the user wants to write into the memory range,
they can make an mmap system call on the file to map the memory range into
the user space program’s virtual address space. Writing into the memory range
can be used to initialize data for the instance’s kernel before boot. But it can
also be used as shared memory to communicate with the instance’s kernel after
boot. The hypervisor-less KVM tool for example does this to make a shared
memory range where the data structures of virtio are accessed and updated by
itself and the instance’s kernel. The mmap call has to be made with the flag
MAP SHARED. The user must always mmap the entire memory range. The
kernel module does not track mmapped memory, so it does not ensure that it
was unmapped when a kernel instance is released (currently the only way to
release an kernel instance is to reload the kernel module). The user must not
use mmapped memory after a kernel instance is released.

Add Notify Device The ioctl IOCTL INSTANCE ADD NOTIFY DEV
creates a new notify device and adds it to this kernel instance. A notify device
is a character device that sends and receives notifications in our virtio imple-
mentation (see Section 4.6.5). The ioctl takes the start address of the polling
memory as argument. The kernel module will request one page of memory at
that address. The notify device will use the beginning of this page for the struct
struct notification_shared_mem which contains the polling variables. On success,
the ioctl returns the minor device number of the newly created device. The
character device file, named “notifydev-” followed by the minor device number,
is located in /dev/.

Load ELF Executable The ioctl IOCTL INSTANCE LOAD ELF loads an
ELF executable for this kernel instance. It takes a file descriptor of an ELF
executable as argument and returns, on success, the entry point of the exe-
cutable. The kernel module automatically requests the required memory ranges
and copies the segments of the ELF executable there. The ioctl will fail if any of
the memory ranges are already assigned to this or another kernel instance. The
addresses of the memory ranges are defined in the ELF executable. So if these
addresses are not available, they need to be changed in the ELF executable
(see appendix). If the ioctl fails, earlier successful memory requests will not be
released.

Boot Kernel The ioctl IOCTL INSTANCE BOOT boots this kernel instance
on a core. It takes the CPU and the kernel entry point as an argument. The
kernel module checks whether the entry point lies within one of the memory
ranges assigned to the kernel instance, if it is not then the call fails. If the
specified CPU is not marked as online in Linux (see /sys/devices/system/

cpu/online), then the call will fail as well. Before the kernel instance is booted,
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its virtual address space is created and all its assigned memory gets mapped into
it.

Usually this ioctl will be called last on a kernel instance. The other ioctls
set up the kernel instance and this ioctl boots it. But this does not have to
be the case, it is possible to make these ioctl calls when the instance kernel
is already running. However, memory that is requested after this ioctl will
not be mapped into the running kernel’s virtual address space. The kernel
module does assign the memory, so it is possible to add memory to a kernel
after boot. The user will likely need a way to inform the running kernel in-
stance of the newly added memory and the kernel instance will need to map it.
The other two ioctls, IOCTL INSTANCE ADD NOTIFY DEV and IOCTL -
INSTANCE LOAD ELF, request memory as well, so the same applies to them.
Calling another IOCTL INSTANCE BOOT ioctl on an instance can be used to
add an additional CPU to a kernel instance. The kernel module will create the
virtual address space again for the new CPU. Successful memory requests made
after the boot of the first CPU but before the boot of the second CPU will be
mapped in the virtual address space of the second CPU.
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6 Evaluation

In this section, we evaluate the implementation of this boot loader. This boot
loader was used on two different systems so far, a ThunderX Cavium machine
and a QEMU virtual machine. All evaluations described in this section were
performed on the ThunderX. An overview on the hardware of the ThunderX is
shown in table 4. Each evaluation is performed with a different version of Bare
Rust, our simple Rust kernel. These modified versions can be found on different
branches on the git repository of this project. The README.md file describes
which branch belongs to which evaluation. The branch specific README.md de-
scribes how the experiment can be launched. In this section, when we refer
to the Rust kernel, then we refer to the version of Bare Rust belonging to the
current experiment.

We discuss the following evaluations in this section. The first three ex-
periments evaluate the functionality of this boot loader: performing a regular
boot, booting Rust kernels consecutively and accessing the UART directly from
a Rust kernel. The last two experiments measure the amount of memory that
Linux requires and compares the virtio console to the UART in terms of printing
throughput.

6.1 Basic Boot

In this experiment, we evaluate whether this boot loader can boot a single Rust
kernel. In addition, we want to test whether the Rust kernel can use the virtio
console to delegate console I/O to Linux.

The boot loader loads the target Rust kernel and boots it. To signal a
successful boot, the Rust kernel sends a magic number to the notify device by
writing it to the guest_msg variable (see Section 4.6.5). The notify device prints
the value of this variable into the kernel log whenever it changes. Afterwards,
the Rust kernel sends a test string over the virtio console, then it spin loops
on the virtio console to receive characters. From Linux, the user observes and
enters characters into the virtio console. For every character the Rust kernel
receives, it sends the character incremented by one back over the virtio console.

After running the boot loader, the magic number appears in the kernel log.
Then, the test string appears in the virtio console. For every character the user
enters, the same character incremented by one appears in the virtio console.

ThunderX Cavium CN8890
CPU Cavium CN8890

Micro Architecture ARMv8
CPU Sockets 2

Cores 48
Memory 500GiB

Table 4: Hardware overview of the evaluation machine.
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The Rust kernel boots successfully, as indicated by the magic number. Del-
egating console I/O to Linux works as well, both for printing and for receiving
characters.

6.2 Consecutive Boot

This boot loader does not stop its execution after a boot, so generally it outlives
the booted Rust kernel. After a Rust kernel terminates, it would be convenient
if the boot loader could boot another Rust kernel without having to reboot the
machine. This would be especially convenient during development of a Rust ker-
nel, where Rust kernel reboots will be common. So the goal of this experiment
is to evaluate whether multiple Rust kernels can be booted consecutively.

We perform four consecutive boots. The Rust kernel prints a test string
over virtio. For each boot, we modify the test string being printed. This allows
us to differentiate the Rust kernel instances and make sure that the next Rust
was correctly loaded. Since these Rust kernels use the same memory ranges,
the kernel module will only grant the memory requests of the first Rust kernel
and deny the later requests, since the memory is already assigned. To allow
requesting the same memory range multiple times, we reload the kernel module.
We always reload the kernel module after the current Rust kernel prints its text
string and before starting the next Rust kernel. We perform this experiment in
two variants:

1. After printing the test string, the Rust kernel terminates by calling the
PSCI function CPU OFF.

2. The Rust kernel does not terminate and prints the test string in an infinite
loop.

In the first variant, the first Rust kernel booted prints its test string. The
next Rust kernel boots successfully and prints its own test string. The remaining
boots are successful as well. In the second variant, the first Rust kernel booted
prints its test string repeatedly. Booting the second Rust kernel however results
in a Linux kernel panic. This kernel panic is caused by a invalid instruction
exception.

If the Rust kernel properly terminates and shuts down its core, then con-
secutive boots succeed. If the Rust kernel is still executing, then consecutive
boots fail. We think that the invalid instruction exception is caused by the
memory requests for the second Rust kernel. When the kernel module assigns
a memory range to a Rust kernel, it overwrites the range with zeros. Since the
first and second Rust kernel use the same memory ranges, all of that memory
gets overwritten with zeros, including the kernel binary. As the first Rust ker-
nel still executes, it reads an invalid instruction and causes the exception. So
to consecutively boot Rust kernels that use overlapping memory ranges, it is
important that the previous Rust kernel stops its execution before booting the
next Rust kernel.
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Being able to boot Rust kernels consecutively is convenient, since it allows
to perform the development of the Rust kernel on the same machine it boots on.
Since this boot loader is just a Linux system with an additional kernel module,
it is possible to use any software available on Linux. So one can modify the
Rust kernel code with an editor, compile it and boot it on one machine.

6.3 Access UART

The goal of this experiment is to see whether the Rust kernel can print to a
simple UART device that was initialized by Linux. The Rust kernel should not
need to perform any initialization itself, but be able to use it directly.

As the UART is already configured by Linux, we only need the parts for
printing of an UART driver for the Rust kernel. Our test machine has an
ARM PL011 compatible UART. We copy the driver parts for printing from the
PL011 UART driver from Barrelfish [21]. The experiment is performed in the
following way: We request the memory page that holds the required registers of
the UART, then we boot the Rust kernel which attempts to print a test string
to the UART. We observe the output of the UART.

The memory request for the page holding the UART registers fails, the Linux
kernel prevents a write to read protected memory and stops our kernel module.
We modify the kernel module to not overwrite requested memory with zero.
After the modification, the memory request is successful and the test string
appears on the UART.

We can see that mapping device memory with our kernel module works.
However, this is only the case if the memory is not overwritten with zeros.
Overwriting arbitrary device registers with zero is not desirable. Doing so is
either prevented by Linux, as it is in this experiment, or it can cause undesired
device behavior, depending on the register. We disabled overwriting assigned
memory with zeros as a temporary fix in this experiment, however this affects
all assigned memory, not just the memory containing device registers. A better
solution would be to adjust the kernel module interface and allow the user to
specify whether a requested memory range should be overwritten with zeros or
not. Apart from that, this experiment shows that it is possible to use a device
initialized by Linux, at least for a simple device like a UART. We did not restrict
Linux from using the UART, which worked fine in this case, because Linux was
waiting for input on the UART and thus did not print to it. For other devices,
Linux will need to be restricted from using it, in order to not interfere with the
Rust kernel. We described in Section 4.6.1 how Linux could be restricted from
using a device.

6.4 Linux Memory Usage

After successfully booting a Rust kernel, Linux keeps running alongside it. As
a consequence, it uses some amount of memory that is not available to the Rust
kernel anymore. The goal of this experiment is to find out what the minimum
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amount of memory is that must be reserved for Linux such that it successfully
boots a Rust kernel.

To find the minimum amount of memory necessary, we boot Linux with dif-
ferent amounts of reserved memory. The amount of reserved memory is set with
the mem kernel parameter. Booting the Rust kernel with an amount of reserved
memory is successful, if Linux itself boots successfully and then the Rust kernel
boots and runs successfully. The memory Linux uses is not independent of the
Rust kernel. Linux creates a new address space for the Rust kernel and maps all
its memory into it. The page tables of this new address space are allocated inside
the memory of Linux. So Linux’s memory usage increases with the amount of
memory assigned to the Rust kernel. Using the virtio console increases Linux’s
memory usage as well, since it requires Linux to run the hypervisor-less KVM
tool. The Rust kernel of this experiment gets 34MB of memory assigned and
uses the virtio console. We decided to include the virtio console in this evalua-
tion, because if there is no interaction between Linux and the Rust kernel, then
there is no advantage in keeping Linux running. Apart from what we explicitly
run, the amount of memory that Linux requires also depends on its configu-
ration. While it would be possible to reduce the memory by using a minimal
Linux configuration, we want to evaluate a more typical configuration. We use
an Ubuntu 20.04.2 installation with the Linux kernel version 5.4.94.

The lowest amount of reserved memory for which Linux consistently boots
the Rust kernel successfully is 513MB. Reserving less memory often results in a
kernel crash during the Linux boot process. But sometimes it boots successfully.

Linux runs out of memory and fails to boot before the Rust kernel does.
So a Rust kernel with only a small amount of memory assigned like in this
experiment boots successfully as long as Linux boots successfully. We are not
sure why Linux sometimes manages to boot with less than 513MB reserved
memory, there seems to be some variability in the amount of memory Linux
allocates during boot. But a bootloader that only sometimes boots successfully
is not useful, so restricting the reserved memory for Linux that much should be
avoided.

6.5 Virtio Console Overhead

The Rust kernel can use the virtio console to delegate console I/O to Linux.
The goal of this experiment is to determine the overhead of using the virtio
console compared to using the UART directly. We compare their performance
in terms of writing throughput.

In this experiment, we measure the throughput of printing characters in two
different scenarios: the Rust kernel using the virtio console to delegate printing
to Linux and the Rust kernel using the UART to print. In the virtio console
scenario, the actual printing is performed by the hypervisor-less KVM tool,
which prints to its stdout. We do not redirect the hypervisor-less KVM tool’s
stdout to the UART, as this would just put an upper bound on the throughput
of the virtio console. We measure the throughput by measuring the time it
takes to print a long test string. The test string we chose is a 20 000 characters
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long version of the Lorem Ipsum placeholder text. Both the virtio console and
the UART print a string character by character. The virtio console puts the
character in a buffer and sends it through the virtqueue. We measure the time
from issuing the first print statement until issuing the last print statement. It
might seem odd that we do not measure the time until the last print statement
finishes. The reason is that in order to determine when the last character is
printed on the UART, we would need to track its output. But from there we
do not have direct access to the system time, which makes it harder to measure
the time correctly. This is also the reason why we measure the throughput
but not the latency of the console. So while the last character is not actually
printed in the time measured, it only has a negligible impact on the throughput,
due to the high number of characters printed. To measure the system time, we
use the system counter, which is specified in the Arm Architecture Reference
Manual[20] and which provides a uniform view of system time across cores. We
read the system counter frequency in Hz from the CNTFRQ_EL0 register. We
divide the value read from the system counter by CNTFRQ EL0 · 10−6 to get the
time in µs. To measure the throughput of printing to the UART, we need an
UART driver. Since Linux already configured the UART, we can just copy the
parts for printing of an existing UART driver. We copy these parts from the
PL011 UART driver from Barrelfish [21]. We hard code the memory locations
of the UART registers and the system counter, they have to be changed to
run the experiment on a different machine. To map these locations into the
Rust kernel’s address space, we request them from the kernel module. This
only works if we modify the kernel module to not fill requested memory with
zero. Writing zero to a page containing registers is either prevented by Linux or
causes undesired behavior, depending on the register. During the experiment,
while the Rust kernel prints 20 000 characters to the UART, the UART driver
on Linux is still running. It does not interfere with the experiment, because
Linux is waiting for user input.

The virtio console throughput measurements are plotted in a histogram in
Figure 5. We performed the virtio console measurement 1800 times. There are
two accumulations in this histogram, the accumulation with the lower through-
put is more frequent than the other. The UART throughput measurements
are in the range from 11 521.56B/s to 11 521.57B/s. We performed the UART
measurement 200 times. The first measurement of each series of consecutive
measurements has a higher throughput. We remove them from the result as we
account them to the warm-up phase of the UART. since the UART throughput
is so stable compared to the virtio console throughput, we indicate its average
in the histogram with a red vertical line.

The throughput of the virtio console is most of the time higher than the
throughput of the UART. Passing the characters between cores through shared
memory seems to be quicker than communicating with the UART device. So
delegating the console to Linux does not result in a performance penalty in
terms of throughput. We think that the two accumulations in the virtio console
throughput histogram are caused by the scheduling of the Linux kernel thread
that polls for virtio notifications. This kernel thread is described in Section 4.6.5.
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Figure 5: Histogram of the virtio console throughput. The red vertical line
marks the average of the UART throughput.

How this kernel thread is scheduled influences the time a notification takes to
reach the recipient. Since notifications from the Rust kernel are blocking, this
can greatly influence the performance of the virtio console.
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7 Future Work

There are several ways how this boot loader can be further developed and ex-
tended. In this section, we describe concrete ideas how this project could be
improved. We will first discuss how Linux’s support of the Rust kernel could be
extended, followed by specific features that would improve the boot loader.

7.1 Linux Support after Boot

One of the main benefits of this boot loader is the support a Rust kernel can
get from Linux after it was booted. This support is currently limited to the
virtio console, so it would be great to extend it and offer more services. In this
section we describe services that could be offered by Linux.

The easiest way to extend the support offered by Linux is to add support for
more virtio device types, like network or block devices. Supporting a new virtio
device type allows the Rust kernel to use devices of that type through Linux.
The Rust kernel does not need drivers specific to the physical device, it just needs
the generic virtio drivers corresponding to the device type. We expect that the
changes necessary to support another device type are the same as the ones we
made for the virtio console. These changes are described in Section 4.6.6, so we
expect that adding support for another device type is straightforward.

Linux could offer other services to the Rust kernel apart from letting it
use devices through it. But in order to let the Rust kernel request a service,
it needs a means of communication with Linux. One possible solution is to
use virtio again and implement a custom virtio driver and virtio device pair
that exchanges messages. The virtio console could be used as template. The
virtio device would, instead of printing a received message, take action based
on it. If a message requires action from the kernel module, then the virtio
device can trigger it through an ioctl. Alternatively one could implement a new
communication channel between Linux and the Rust kernel. Depending on the
communication channel, it could make sense to use and extend the notify device
used by virtio (see Section 4.6.5).

A service that Linux could offer is to let the Rust kernel request additional
CPUs. The Rust kernel would specify an entry point, and the Linux kernel
boots an available CPU at that location. Alternatively the Rust kernel could be
able to request more memory while it is running. Adding more CPUs or memory
to a Rust kernel is already possible in the current implementation, but it has
to be initiated from Linux with the corresponding IOCTL (see Boot Kernel in
Section 5.3). Initiating such requests from the Rust kernel is more useful since
it allows the Rust kernel to decide when it needs them and how much it needs.
It would also allow to pass a response to the Rust kernel, for example the exact
range of memory that was assigned or whether booting an additional CPU was
successful.

Another service that Linux could offer is to let the Rust kernel use the file
system through it. This is similar to implementing the virtio block device, but
the virtio block device interacts directly with the block device and thus is not
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aware of the file system. Being able to directly read or write files would be a
convenient functionality for the Rust kernel to have. The Rust kernel would
not need drivers to use the file system and could use any file system that Linux
supports.

The last service we describe that Linux could offer is to manage the virtual
address space of the Rust kernel. Currently the Linux kernel module maps all
memory assigned to the Rust kernel into the virtual address space the Rust
kernel boots with. Afterwards, it will not modify this address space in any way.
If the Rust kernel wants to perform any changes to an address space or create
a new one, then it needs to implement these operations itself. Linux could
offer to do these operations for the Rust kernel. The Rust kernel could then
for example request to map a range of pages at a virtual address in a certain
address space. Another advantage of letting Linux manage memory mappings
is that it can ensure to only map memory that is assigned to the Rust kernel.
This would prevent accidentally mapping memory that is not assigned and thus
not reserved for the Rust kernel. Since Linux manages the page tables, it would
allocate them inside its own memory, like it currently does for the initial address
space.

7.2 Setting up Registers

A way to pass boot arguments to a kernel is to set specific registers to certain
values. Such a value could be a magic number or a number indicating whether
the CPU is the bootstrap CPU or not. It could also be an address describing the
location of a data structure. Such a data structure could for example contain
boot parameters or a description of the hardware, like a device tree. Other
possible use cases, specific to our boot loader, are to set a register to the address
of the virtio console’s MMIO registers (see Section 4.6.3) or to set the stack
pointer (see Section 4.5). It would be convenient to have an ioctl that lets
the user choose what value a specific register will have when the Rust kernel
starts executing. If a user wants to pass a data structure to the Rust kernel,
they could achieve that in the following way: request memory from the kernel
module, use mmap to map it into user space, write the data structure into it
and set the register to the address of the data structure. To implement this
feature, the kernel module would have to set the registers to the specified values
just before jumping into the Rust kernel image. In the current implementation,
the user can manually set registers to certain values by modifying the kernel
module. But we expect this to be a common use case, so it would be convenient
to support it with an ioctl in the kernel module interface.

7.3 Exception Vector Table

In the current implementation, our boot loader does not set up an exception
vector table for the Rust kernel. The Rust kernel is booted with the exception
vector table used by Linux. So if the Rust kernel causes an exception, it is
handled by Linux. Depending on the exception, this causes the Linux kernel
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to panic. If the Linux kernel would not panic, then it could boot another Rust
kernel without needing to reboot the machine. Currently, the Rust kernel has to
replace the exception vector table to prevent the Linux kernel from panicking.
Instead, our boot loader could set up a default exception vector table for the
Rust kernel. This default vector table could use the virtio console to send
messages to Linux to inform the user that an exception occurred. In case of a
fatal exception which causes a panic, like a null pointer exception, it could print
useful debugging information, like the type of exception or the address where
the exception was caused. The Rust kernel could still modify or replace the
default exception vector table provided by the boot loader if it needs to.

7.4 Share Memory between Rust Kernels

The kernel module ensures that a memory range is not assigned to multiple Rust
kernels (see Section 4.2). The intention is to prevent the case where two Rust
kernels are under the impression that they own a range of memory exclusively,
but they actually share it with each other. But only assigning memory exclu-
sively might be too restrictive. Booting multiple Rust kernels and letting them
share memory could introduce interesting possibilities to use our boot loader,
like building an OS that uses multiple Rust kernels, similar to Popcorn (see Sec-
tion 3.2). Not much is needed to support sharing memory among Rust kernels,
just a mechanism to circumvent the memory assignment check that disallows
assigning the same memory range multiple times. One could add a parameter to
the ioctl used to request memory that allows to specify the memory as sharable
with other Rust kernels.

7.5 Release a Kernel Instance

In the current implementation, the only way to release a kernel instance and the
resources assigned to it is to unload the kernel module. This can be used to start
a Rust kernel again after it stopped: if the previous Rust kernel instance stops
its execution, then reload the kernel module and boot the Rust kernel again.
The new Rust kernel instance can use the same resources as its predecessor, as
we saw in Section 6.2. However, every time the kernel module is unloaded, all
kernel instances are released. So an ioctl could be added that allows to release a
single kernel instance. The function delete_proc_instance() in kernel-module/

procfs.c is responsible for releasing a kernel instance. So an ioctl that releases a
kernel instance could just call this function. However, there are two issues with
how this function releases memory in the current implementation. The first
issue to be aware of is that it leaks memory, because the page tables created
to map the memory into the address space of the Rust kernel are not freed.
The second, more important issue is that if the Rust kernel instance, whose
resources are being released, is still executing, then overwriting its memory with
zeros will cause a null pointer or an invalid instruction exception, as described in
Section 4.7.1. In order to safely free a kernel instance’s memory, the Rust kernel
has to stop its execution with the PSCI function CPU OFF. The kernel module
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could use the PSCI function AFFINITY INFO to check whether the CPU used
by a kernel instance is turned off. Adding such a check would make an ioctl to
release a kernel instance safer. In addition to that, it would be useful if there
was a way to instruct the Rust kernel to call the CPU OFF PSCI function. If
the Rust kernel sets up an exception vector table, then it could add an interrupt
which Linux can raise to cause the Rust kernel to call CPU OFF. Alternatively
it could also be caused by a command sent over the virtio console. Adding these
two mechanisms, a check that the Rust kernel is not executing and a method
to make it stop its execution, would make an ioctl to release a kernel instance
safer and more useful.
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8 Conclusion

In this thesis, we describe a way how Linux can be used as a boot loader. What
makes this boot loader special is that Linux keeps running after booting a Rust
kernel, resulting in a system where multiple kernels run in parallel. To prevent
the kernels from interfering with each other, resources need to be restricted and
assigned to each kernel. Linux is restricted from using the entire memory with
a kernel parameter, the unused memory can be assigned to Rust kernels. CPUs
are all assigned to Linux in the beginning. Every boot invocation removes a
CPU from Linux and hands it over to the booting Rust kernel. Devices are per
default owned by Linux. They can either be removed from Linux’s control by
disabling the corresponding device driver or they can be shared. In the shared
case, the devices are controlled by Linux and the Rust kernel can use them
through Linux via virtio. The required software, virtio driver and virtio device,
needs to be implemented once per device type, but allows the Rust kernel to use
all devices of that type through the device support of Linux. The device type
we implemented for this thesis is the virtio console. The boot process itself is
implemented inside a kernel module. To boot a Rust kernel on a certain CPU,
it lets Linux perform the entire CPU shutdown process, except for the part that
actually shuts the CPU down. As a result, from the point of view of Linux, the
CPU is shut down, so Linux will not touch it anymore. In the meantime, the
CPU starts executing the Rust kernel. So in this boot loader, the boot process
does not change the power state of a CPU, it just removes it from the control of
Linux. For that reason, the CPU is in an initialized state when the Rust kernel
starts executing. The MMU is enabled, all memory assigned to the Rust kernel
is mapped into the current address space, an identity map which is set up by
the kernel module prior to boot. To suit the needs of a specific Rust kernel,
the boot environment can be modified before control is handed over to it. The
kernel module of this boot loader allows to load a kernel binary in the form of an
ELF executable. Other kernel binary formats can be loaded from user space if a
corresponding loader is available. User space programs interact with the kernel
module through the kernel module interface. It allows to operate the kernel
module, like instructing a boot process, assigning memory to a Rust kernel or
mapping that memory into user space. By mapping Rust kernel memory into
user space, it is possible to initialize it before boot or communicate with the
Rust kernel after boot.

We conclude that it is feasible to use Linux as a boot loader which boots a
Rust kernel and runs in parallel with it while providing support. The support the
current implementation provides is limited to console I/O, but we expect it to be
easily extensible to support more device types. While not tested with a mature
Rust kernel, we saw that this boot loader can boot a simple kernel, in the form
of a bare metal Rust program. This kernel profits from the initialization done by
Linux, it starts with paging and caching set up, fatal exceptions are reported by
a Linux kernel panic and, as we saw with the UART device, initialized devices
can be taken over. Together with the device support provided by Linux over
virtio, this makes it easier to set up and run a new kernel in development.
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The boot loader also improves the portability of a Rust kernel, in terms of the
machines it boots on as well as the devices it supports through virtio. However,
as we tested the boot loader only on two different systems so far, the preceding
statement on portability has to be taken with a grain of salt and requires further
evaluation. The boot loader itself profits a lot from Linux as well, being able to
use networking, various devices and software written for Linux. One can easily
connect to the boot loader over the internet, modify a Rust kernel, build it and
then boot it, all on the same machine. As long as the previous Rust kernel
terminates, the boot loader can reuse its resources and boot a new Rust kernel,
without needing to reboot the machine every time. The current implementation
does leak memory though, so Linux will eventually run out of memory. This
boot loader requires no modifications to the Linux kernel itself, all instructions
that are performed in kernel space are contained within a kernel module. This
boot loader is still in its early stages, it can be improved in many ways. From
features that make it more convenient to use or would be useful in specific cases
to essential features like supporting more device types over virtio. Apart from
improving the boot loader itself, it can be used as a stepping stone for other
future projects in OS development.

Overall, this boot loader simplifies the development of new operating systems
on ARMv8-based systems, it takes care of booting up the machine, leaves the
system in an initialized state and shows that device interaction can be left to
Linux to simplify the implementation and make it more portable.
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Appendix

Build Rust Kernel

A bare metal rust program that runs on an 64 bit ARM-based system should be
built with the aarch64-unknown-none target triple. The target triple and the
base address of the ELF image can be set by adding a cargo configuration file
.cargo/config.toml with the following content:

target = "aarch64-unknown-none"

rustflags = ["-Clink-arg=--image-base=0x100"]

This would set the base address to 0x100.
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