
Bachelor’s Thesis Nr. 488b

Systems Group, Department of Computer Science, ETH Zurich

Generating Platform Configuration from Netlists

by

Georg Wehrli

Supervised by

Daniel Schwyn
Prof. Dr. Timothy Roscoe

November 2023 - May 2024

Abstract

Most system software needs information about the platform they are running on. System
configuration can take different forms. Creating system configuration can be tedious and
error-prone. Netlists are a way to represent the connectivity of circuits.

In this work we explore how we can utilize the information stored in netlists. We
create an algorithm which traces wires through a netlist to determine how different parts
are connected. With this connectivity information we can validate and generate pin
assignments of designs for field programmable gate arrays. An algorithm for identifying
devices on an I2C bus shows that also more complex structures can be extracted form a
netlist. To implement these algorithms a rust program was created.

i

Acknowledgements

Throughout the writing of this thesis, I have received a lot of support and assistance.
First, I want to express my gratitude towards my co-supervisor, Daniel Schwyn, who
has invested countless hours helping me understand the different problems encountered
during this work. His answers and feedback always helped me keep moving forward when
I felt stuck. I would also like to thank my sister for the many learning sessions we spent
together, motivating each other. Lastly, an enormous thank you goes to my girlfriend,
who encouraged me along the way to keep working and for all the breaks we had that
fully recharged me.

ii

Contents

1 Introduction 1

2 Background 2
2.1 Enzian . 2

2.1.1 Baseboard Management Controller 2
2.2 Netlist . 2

2.2.1 The Netlist of Enzian . 4
2.3 Inter-Integrated Circuit (I2C) . 5
2.4 Xilinx Design Constraints . 5
2.5 Electronic Components . 5

2.5.1 Capacitors . 6
2.5.2 Resistors . 6
2.5.3 Level Shifter . 6

2.6 Previous Work . 6

3 Implementation 7
3.1 Problem . 7
3.2 Using Netlists . 7
3.3 Connection Between Components . 8
3.4 FPGA Configuration . 9
3.5 I2C Bus . 11
3.6 Connecting Netlists . 13
3.7 Augmenting the Netlist . 14
3.8 Structuring The Data . 16

4 Evaluation 19
4.1 FPGA Configuration . 19

4.1.1 Validate Pin Assignments . 19
4.1.2 Generating PACKAGE PIN Constraints 24

4.2 I2C . 26
4.3 Characterizing . 26

4.3.1 Generating Netlists . 27
4.3.2 Converting Netlists . 28
4.3.3 Connection Search . 29

5 Conclusion 30

iii

Listings

3.1 Example specification file . 10
3.2 Example of a file detailing the internal connections of components 14
3.3 Netlist struct . 17
4.1 Constraints A . 20
4.2 Constraints B . 20
4.3 Extract pin pairs from netlist . 20
4.4 Section of the specification for the DIMM connector 24
4.5 Generating a XDC file. 25
4.6 Differences between generated and and existing constraint files 25
4.7 Component specification detailing how signals going through the level shifter. 26
4.8 Extracting I2C bus devices. 26

iv

Chapter 1

Introduction

Systems software needs information about the hardware it is running on. This information
has different forms, for example the device tree in the linux kernel or Xilinx Design
Constraint (XDC) files to create correct bitstreams for field programmable gate arrays
(FPGAs).
Computer systems can be very complex. To facilitate the design process, computer-aided
design tools (CAD tools) are used. A fundamental aspect of such a design is how the
different electronic components are connected to each other. This crucial information,
detailing the interconnections between components, is often stored in a netlist.
In this work, we will explore how we can extract information out of the netlist and how
it can be used to aid in the process of creating platform configuration files.

Motivation

While it is possible to create system configuration files by hand, it is usually a tedious
and error prone process, because the necessary information are often in different files
and different formats. Since netlist contain the hardware topology, they can be used to
propagate information used in system configuration files.

1

Chapter 2

Background

When working with netlists we need to understand what they are. To use the information
from the netlist to aid in the creation of platform configuration it is crucial to know how
they are structured and used.

In this chapter we will briefly shine a light on the Enzian platform. Then we will
learn what netlists are and take a look at the netlist of the Enzian platform, followed by
a small overview over the I2C bus and xilinx design constraints. And at the end the end
there is a very broad introduction to a few electronic components and their function.

2.1 Enzian

The Enzian is a computer for hybrid systems research, developed by the Systems Group
at ETH Zurich. It is a two-socket board and is equipped with a ThunderX-1 CN8890P-
NP CPU and a Xilinx XCVU9P Ultrascale+ FPGA. The CPU and FPGA are connected
via the CPU’s native inter-socket cache coherence protocol. [1]

2.1.1 Baseboard Management Controller

A baseboard management controller (BMC) is a chip on a computer orchestrating the
components on the board. It manages clocks and power distribution. On the Enzian a
Enclustra Mercury ZX5 with a Xilinx Zynq 7000, running a OpenBCM, is used as the
BMC. [1]

2.2 Netlist

Netlist describe how different components are connected to each other. This includes a
variety of different components such as logic gates or parts on a circuit board. There
is not a specification or a single format used to save netlist, but different formats for
different purposes and CAD tools [13]. Whilst the exact format might differ, the content
of a netlist usually a list of components, and a list of how those components are connected
to each other (the nets).
In the specific case of the Enzian platform the netlist was exported from the Altium CAD
tool and then parsed into a json file. This file has two lists: one for components and one
for wires. A component is a json object with three fields:

2

� component type: This field has information about what component type is used
for this components.

� description: A field to add additional information about components.

� designator: This field contains an identification code for a component.

A wire is a json object with three fields:

� name: This field contains the name of the wire. In many cases it hints on the
function of the wire, for example a name ”I2C.SDA” is probably the serial data
signal of an I2C bus.

� number: Unique number for each wire.

� pins: A list of pins which are connected to the wire.

A pin is a json object with five fields:

� part value: This field is the component type of the component the pin is on.

� pin name: This is the name of the pin. Often it is the same as the pin number,
other times it hints at the function of the pin.

� pin number: The pin number identifies the pin on the component. It can be a
number or a mix of letters and numbers.

� pin type: This field describes which type a pin has.

� reference: This field is the designator of the component on which the pin is on.

Figure 2.1: Illustration of the schema of the netlist from Enzian.

This structure fully captures how all the different components on the Enzian board are
connected with each other. It creates a superset of the actual connections on the board,
since there are some parts which are in the netlist but not used in the final design. In
this thesis the term netlist will refer to a layout like this (if not stated otherwise).

In this thesis we assume that the component types, pin numbers and designators are
correct. We do not use the pin names and wire names because even if they contain
information about their function, there is no standardized way how these names come
about.

3

2.2.1 The Netlist of Enzian

There are a few things to note about the netlist of Enzian.
The component type field of component is in most components a specific identification

number for an electronic component, but it also can be a more general description as for
example ”Capacitor”, ”Resistor” or ”Test Point SMD”. Having such general component
types limits what can be directly done with the netlist, because for example if one wants
to use it to estimate some electrical properties the component type does not reliably
represent what exact component it is.

The description field can hint at a components function. At times it is empty;
alternaternatively it contains some more descriptive text as for example ”UBS Type A
THT” or just the component type.

The designators of the components are unique except for the following: L100, L102,
L104, L106, L108, L131, L133, L135, L138, L140, L142. For each of this designator there
are two component types, namely ”FBMH1608HM101-T”, which is a ferrite bead, and
”0603 TRUE 0R”. Presumably this conflict of designator are options in the design, so
either option could be used in the produced board.
When designators are not unique, the designator of a component type (the reference

and part value fields of pins) can be used to form a key for a specific designator. Some
pins reference the component type with an OR in front of the actual component type,
thus the pair can not be used as is. But when removing the preceding OR it works fine.

The designators start with one of the following prefixes ”B”, ”C”, ”D”, ”DR”, ”ESD”,
”FD”, ”HS”, ”IC”, ”J”, ”L”, ”LM”, ”NT”, ”Q”, ”R”, ”S”, ”SN”, ”SW”, ”TP”, ”U” and
are followed by a number. The prefixes group different component types (Table 2.1).

Table 2.1: Designator Prefixes

Prefix Component Type
B battery holder
C capacitors
D diodes
DR drilled holes
ESD ESD suppressor
F fiducial
HS heat sink
IC integrated circuits (incl. CPU & FPGA)
J connectors
L inductors / ferrite beads /filters
LM layer markers
NT net tie
Q transistors
R resistors
S tactile switches
TP test points
U integrated circuits

In the netlist of the Enzian the following pin types were observed: INPUT, OUTPUT,
POWER, PASSIVE, OPEN COLLECT, I/O.

4

2.3 Inter-Integrated Circuit (I2C)

To understand how we can identify devices which are part of an I2C bus we first have to
understand how the I2C bus is built.

The I2C-bus protocol is a method of communication for different integrated circuits
in an circuit. The circuit connected on the bus are recognized by an unique address.
There are controllers and targets, several controllers can be on the same bus due to an
arbitration process. Controllers initiate data transfers on the bus and generate the clock
signals for the transfer. The I2C bus consists of two wires; the serial data (SDA) and
serial clock (SCL) wire. When no data is being transferred the wires are pulled up by a
pull-up resistor. [4]

2.4 Xilinx Design Constraints

Understanding FPGA configurations is crucial to know what information we need from
the netlist to validate and generate such configurations. FPGAs are highly configurable
integrated circuits. The big FPGA on the Enzian and the FPGA of the BMC are both
AMD FPGAs, hence this section is about creating designs in Vivado. Vivado is the design
software for AMD adaptive SoCs and FPGAs.[12] Vivado can generate bitstreams which
are uploaded to the FPGAs to program them. To create a correct bitstream Vivado
needs some more information, so-called design constraints. The design constraint are
commands that follow the Tcl semantic. Examples for such constraints are:

� Clock constraints for defining clocks, which are the time reference for reliably trans-
ferring data between registers.

� I/O delay constraints to model external the external timing context.

� Physical constraints to inform how the system should be layed out in the FPGA.

Physical constraints are commonly saved in a Xilinx Design Constraints (XDC) file.
This is then read by Vivado when opening the design. Typically a physical constraint
has the following layout: set property <property> <value> <object list>.[11]

So an line in a XDC could look like this:

set property PACKAGE PIN AA19 [get ports B USERIO 1V8.LED1]

The property PACKAGE PIN assigns a logical port, so to speak a signal of the FPGA code,
to a specific pin of the FPGA. So in the example the pin AA19 gets assigned to the port
of the signal B USERIO 1V8.LED1.

2.5 Electronic Components

In an electronic circuits there are often various different component types. In this section
a select handful of components are briefly highlighted to get a basic understanding of
their functionality.

5

2.5.1 Capacitors

A capacitor can store electrical energy. In a circuit it can have different functions. There
are different functions a capacitor can fulfill in a circuit. Aside from storing charge they
can be used for filtering, coupling and decoupling. [7]When used as a filter they can
suppress unwanted frequencies. Coupling is when it is intended that a signal can be
transferred. When decoupled you do not want a signal to be able to be transferred over
a connection, for example in a constant power supply.

2.5.2 Resistors

Resistors have a wide variety of application. They can be used for limiting current,
voltage division and more. A so-called pull-up resistor is a resistor used to ensure a well-
defined logic level when a signal is not actively being driven by an input. For example
the wires of an I2C bus can be driven by a pull-up resistor to ensure that they are HIGH
when not pulled down by a device on the bus.

2.5.3 Level Shifter

A level shifter is used to interface between two different logic levels. For example on
the Enzian platform there are I2C buses connected to the XCVU9P FPGA and DIMM,
the side of the bus at the FPGA operates on 1.2 V while the DIMMs operate on 2.5;
connected by a level shifter.[3]

2.6 Previous Work

Kruszewski et al. describe a way to generate design constraints for multi-board systems.
They use pin mappings for the different board they connect to build a tree from which
they can infer the constraints. It is not made clear how the mappings are made. [5]

6

Chapter 3

Implementation

3.1 Problem

Every computer program runs in an environment. This environment consists of everything
the program needs to run. Operating systems create an abstraction of the hardware such
that programs in user space can be agnostic about the hardware they run on. In other
words, the operating system provides an environment in which the program is run. System
level software does not have this abstraction layer and therefore needs to be aware of the
hardware it is running on, the environment it is in. A device tree, describing the different
components of a systems, or a Xilinx Design Constraint file, detailing how a bitstream for
an FPGA should be created, are different examples for system configuration files. Often
these system configuration files have to be created by hand. To tackle this problem the
idea of using netlists to aid in the creation of configuration files came up.

3.2 Using Netlists

To make use of the netlist we create a program which can parse the information from a
netlist and manipulate it to get useful information out of it. The programs requirements
are determined by what we aim to extract from the netlist and how we want to do it. As
a first step we will discuss what we could potentially use a netlist for.

At a very basic level we are interested in the connectivity of the different elements
of the netlist. Knowing how different signals are wired between components allows us to
direct information from one part of the netlist to an other part. If we have a specification
on one component of the netlist, this then can be used to validate that this specification
holds on a connected part on the netlist. A simple case that comes to mind is validating
pin assignments or creating constraints for an FPGA. A more involved application is to
not only propagate data from part a to part b of the netlist but also manipulate the data
on the way.

As the netlist stores a whole circuit it also can be used to obtain parts of a circuit.
For example if the question is which integrated circuits are connected to an I2C bus, the
netlist holds this information. Extracting the power tree of a circuit which then can be
used to automatically generate power sequencing [8] is a more comprehensive example.

In the following sections we will take a deeper look at different applications where
we can use a netlist and how we can use it. In the last part the the structure used to
implement the different functionality on is discussed.

7

3.3 Connection Between Components

As the netlist stores the connectivity of a circuit we can use it to propagate information
along wires through the netlist. This aids us to figure out how different parts influence
each other. Put differently, we want to extract how different components are connected.
These connections might be one wire connecting two components directly or indirectly
over multiple wires and components. More precisely we want to look at the pins of
components, because often the function of a signal is defined on by a pin.

To simplify this problem we consider two components; A and B. The goal is now to
extract from the netlist how the pins of A and B are connected. To achieve this we can
take a pin on component A, take the wire this pin is connected to and then check if there
are pins on the wire connected to component B. This gives us a list of pins on B which
are connected to the pin on A. However this only reports direct connections which would
limit the capabilities of the program immensely as there are many cases where there are
components between two parts we are interested in. An example would be, when there
is a capacitor, resistor or a level shifter connecting two wires. To propagate data over a
capacitor or resistor it is relatively straight forward as they usually are connected to two
wires. When coming from one end to such a component is clear where to continue. For
a component with more than one two connections, as a level shifter, it is not clear from
the netlist how a signal propagate through it.

A B

1

2

3

4

5

1

2

3

4

5
6

Figure 3.1: Diagram illustrating how different connections between parts can look. The
boxes are arbitrary components and the lines represent wires connecting them. There is
a direct connection, a connection with a simple component between the two parts and a
more complex situation where it is not clear how signals go through the components.

Tracing a connection through components is not straight forward. Components can
have complex functionality, which is not reflected in the netlist. Additionally the way
we trace connections through components might depend on what we want to achieve.
The only data in the netlist that could hint to how pins of a component relate to each
other are the pin names. For example the component with the designator ESD1 (an
electrostatic discharge suppressor) has two pins with the name IO1 and two pins with the
name IO2 which are connected internally respective, the component with the designator
U7 (a bus switch) has 10 pin pairs with the names A1-10 and B1-10 or the component U5
(a multiplexer) which has 4 pin triplets with the names 1-4A, 1-4B1 and 1-4B2. These

8

might look like a good way to find out how signals are wired through components, but
as mentioned in section 2.2 the names are not a reliable source since they do not follow
a standard.

Considering this we get the following algorithm (Algorithm 1) to find the connections
from a pin of component A to pins of component B. The algorithm has a wire queue. For
each wire in the queue it checks the all the components connected to the wire if they are
component B. If the component is component B the pin on which the wire is connected
to component B is added to the result list, else all connected wires of the component are
added to the wire queue.

Algorithm 1 Search Connections (1)

1: Input: pin a, component B
2: wire queue← pin a.wire
3: for wire in wire queue
4: for pin in wire.pins
5: if pin.component == component B then
6: result← pin
7: else
8: wire queue← pin.component.wires
9: endif
10: endfor
11: endfor
12: return result

The algorithm captures all connections, but in many cases also connections we do not
want. To understand better when it works fine we can remove the two components A and
B from the netlist. This splits the graph into several connected components (Here we do
not mean components of the netlist but parts of a graph). These connected components
are the connections we find in the netlist. If the components A and B would be removed
from Figure 3.1 there would be three connected components. One connecting pin 1 and
1, one connecting pin 2 and 2 and on connecting pins 3,4,5 and 3,4,5,6 of component A
and B respectively. In other words we are only able to extract a one-to-one pin pair for
connectet Nevertheless if we use the algorithm on every pin of component a we can create
pairs of lists of component which we then can use in other applications as checking and
creating FPGA configurations.

3.4 FPGA Configuration

The highly customizable nature of FPGAs leads to a lot of configurations which have to
be created. Some of the configurations directly depend on what function is implemented
and how the FPGA is connected to other peripherals on the circuit board. Hence it would
be very helpful to verify and generate different configurations.

Xilinx design constraint (xdc) files have a wide spectrum of properties they can specify,
some of which can be inferred with the help of netlists. An interesting property for us
is the PACKAGE PIN property. This property informs Vivado (the tool used to program
Xilinx FPGAs) which logical signal should be on which pin of the FPGA. To which pin
a signal connects is mostly determined by its function. The logic for an I2C module in

9

the FPGA should be connected to the appropriate pins which are connected to a I2C bus
on the board. The function of the wire on a board is determined by the component it is
connected to or respectively what it represents, for example a PCIe bus or a wire powering
an LED. Not all pins of the FPGA can be assigned by the user. There are some pins
with a predefined function and power pins. For the large XCVU9P FPGA the pin AE12
is an example of a pin with a predefined function as it is used for the PROGRAM B 0
signal. In the packaging and pinouts product specification for the FPGA [10] there is an
overview over every pin of the FPGA.

To validate if Vivado has generated the desired pin assignments a few things are re-
quired. Firstly the assignments from Vivado are needed, fortunately they can be exported
easily as a csv file after the synthesis of a project. Secondly something to compare the
exported pin against is needed. This can be any specification, for example the pinout
specification of a PCIe connector. Then the key here is that the specification is on a
different part of the circuit and is transferred over the netlist to the FPGA. This gives
a mapping from the FPGA pins to the expected signals. They then can be compared to
the actual signals the pins were assigned after the synthesis and errors can be detected.
A small side note is that the logical signals in the FPGA can have arbitrary names. In
practice they are usually named after the function they have. So the name ”i2c 0 scl”
will be a part of an I2C bus. So if we want to compare the logical signal names to a
specification it is crucial that the two are somehow comparable. In other words if we
want to use a specification from a component (e.g. a pinout sheet of a connector) we
have to modify it such that it is clear how it relates to the logical signal.

Optimally the names in the specification are the signal names used in the FPGA. If
they do not match we need a function to convert the signal names. As this function also
has be provided it can be considered as a part of the specification. If we have several
connections of a certain type we might want to use such a function to add a prefix to the
signal names such that we do not have duplicate names.

To generate the PACKAGE PIN property for a XDC file we can use a similar ap-
proach, where a specification the required constraints on a component of the netlist and
then gets propagated through the netlist to the FPGA pins.

The format used for the specification is as follows. It is a JSON file with a field to
specify what part the specification is for and a list of pairs detailing which pin has which
signal.

Listing 3.1: Example specification file

{
” part ” : ” part ” ,
” p i n s i g n a l p a i r s ” : [

{
” p in nr ” : ”1” ,
” s i g n a l ” : ”a”

} ,
{

” p in nr ” : ”2” ,
” s i g n a l ” : ”b”

}
]

}

10

Given such a file and the designator of corresponding part and the FPGA we can
generate a constraint file by first using the search connections algorithm (algorithm 1)
to find the pin connections of every pin. Then for the pins where there is only one
corresponding pin found on the FPGA we can save set property PACKAGE PIN <FPGA

pin> [get ports {<signal from specification>}] to an output file. The pins for
which it was not clear how they are connected are reported to the user such that they
can be manually added.

3.5 I2C Bus

A somewhat more intricate goal is to extract I2C bus topologies. For this process we
can use more than just how one signal is connected to different components but how two
signals are connected.

In some cases extracting it might be as simple as gathering all components on a SCL
or SDA wire to extract the bus topology, but this is not necessarily the case. When
there is more then one controller on the bus there needs to be a pull-up resistor. Since
the I2C signals need to be high unless pulled down by a component, this voltage has
to be supplied. If there is one controller on the bus the controller can pull the lines to
high. Sometimes even if there is only one controller and certainly when there is multiple
controllers the I2C wires are pulled to HIGH by a pull-up resistor. [4] So if we would
take all components connected to the SDA or SCL wire we would also have the pull-up
resistor in that result. Fortunately design of the I2C bus gives us some constraints on
which components of the netlist we can view as part of the I2C bus and which we can
discard. Mainly we know that a component on the I2C bus has to connect to both the
SDA and SCL wire. A simple algorithm is the following, where we have as an input two
wires making up the I2C bus. The algorithm makes two sets, a set for the components
connected to the SDA line and a set for components connected to the SCL line. Then it
returns the components which are in both sets.

Algorithm 2 Extract I2C topology (1)

1: Input: SCL wire, SDA wire
2: SCL components← SCL wire.components
3: SDA components← SDA wire.components
4: I2C components← SCL components ∩ SDA components
5: return I2C components

While with this approach we capture all the components if they are directly attached,
cases exist where this might not be the case. An example is a situation where the
components connected to the bus work on different voltages and thus require a level
shifter between the I2C bus and the component. To discover the component connected
to the I2C bus we would need to ”step” over the level shifter. This could possibly happen
in two different ways: Either there is a level shifter for both lanes or both lanes connect
to the same level shifter. With the approach so far we would miss the part of the I2C bus
with a different voltage level in both cases. In the first case we would assume that the
level shifters are not an important part of the bus at all and in the latter case we would
mistake the level shifter as part of the I2C bus.

With only the information contained the netlist it is not clear what components do.

11

As a result we cannot know if the component we assumed to be on the I2C bus really is
a part of it or if it is a component the bus passes through like a level shifter.

If the two bus lines are connected over two separate components, it is possible to
infer which wires are the bus lanes. The following is a proposal how to achieve this: We
start the same way as before, check for all the components on each of the lines if they
are connected to both lines. The wires of components which are not connected to both
bus lines are collected in two different sets. One for the wires indirectly connected to
the SDA lane and on for the wires indirectly connected to the SCL lane. For example if
we have a resistor which is connected to the SCL line and a voltage supply wire we add
the voltage supply wire to the set of wires for the SCL wires. Then we remove the wires
which are present in both sets from said sets. This is done on two assumptions. The
first assumption is that two parts of an I2C bus lane only are connected at one singular
point. In other words if we have to two SDA wires which are connected to each other to
form one SDA wire of an I2C bus, they are connected via a single connecting component.
This is a reasonable assumption because having two connections would not only increase
complexity but most likely also have a negative impact on signal integrity. The second
assumption is that only I2C bus lanes are not connected to both wires indirectly. For
example the two pull-up resistor connected to the two bus lines are connected to a the
same voltage supply wire. If that was not the case we would assume the wires connected
to those resistors are part of the I2C bus. Wires indirectly connected to an I2C bus are
most likely to power the circuit where again it makes sense that the same power supplies
are used for signal integrity. This potentially leaves us with two non-empty sets of wires.
If the sets contain one wire each it is simple and the two wires are used as the new
input for the algorithm. It is more challenging when the sets contain more than one wire
because then we have to match them such that we get a new pair of wires to continue. To
achieve this we have to use some heuristics. A simple approach is to just compare how
many components are on the wires but clearly this only works if two possible buses do
not have the same amount of components. An other possibility is to figure out which wire
were connected with the same component type. This assumes that different bus parts
are connected with component types. Maybe also the wire names could be compared to
figure out which pair up or the user has to decide how to match up the wires. Then with
the new pair of wires the algorithm do the procedure again of checking which components
of the new wires are part of the bus and which wires are indirectly connected, leaving
out wires already visited. This is repeated until there are no more matching wires that
could be part of the I2C bus, then the found components on the bus are returned. The
resulting algorithm looks like this:

12

Algorithm 3 Extract I2C topology (2)

1: Input: SCL wire, SDA wire
2: (SCL queue, SDA queue)← (SCL wire, SDA wire)
3: while (SDA wire, SCL wire)←match wires(SCL queue, SDA queue) do
4: SCL components← SCL wire.components
5: SDA components← SDA wire.components
6: I2C components← SCL components ∩ SDA components
7: SCL queue← (SCL components \ I2C components).wires
8: SDA queue← (SDA components \ I2C components).wires
9: remove intersection(SCL queue, SDA queue)
10: endwhile
11: return I2C components

While this algorithm can cover a larger set of possible I2C bus topology layouts its
output quality might suffer because of the different assumptions it takes. A case not
covered by this algorithm is when a single level shifter is used to shift the voltage levels
of the wires. In section 3.7

3.6 Connecting Netlists

When working with netlists we might not only use a single netlist. The Enzian platform
uses a daughter board for its network connectors, so if we want to propagate some in-
formation from a network connector it would be useful to be able to connect different
netlists. A connection between two netlists can be established through two connectors.
There are several different way two netlists could be connected.

Figure 3.2: Different ways to connect two netlists

N
et
lis
t
A

N
et
lis
t
B

C
on
n
ec
to
r
A

C
on
n
ec
to
r
B

(a) New wires on the ex-
isting connectors connecting
two netlists.

N
et
lis
t
A

N
et
lis
t
B

N
ew

C
on
n
ec
to
r

(b) A new component re-
placing the connectors con-
necting two netlist.

N
et
lis
t
A

N
et
lis
t
B

(c) The connectors removed
and wires merged together
to connect two netlists.

Changing the two components that should be connected is an option (a). Each pin
on the components are doubled and new wires are created to connect the new pins. A
slightly different approach is to merge the two connectors together (b). Both options are
limited by the fact that it is not possible to infer how wires connect over components
with the netlist alone. When doubling pins or merging two components without changing
the pin numbers we end up with components which have pairs of the same pin number.

13

This opens up the option to step over the connecting components by matching up the
pin numbers, but this fundamentally goes against the fact that pin numbers are unique.
And even if that was no issue it only solves the problem for the components which are
used to connect the netlists. For all other components it still is unclear how to pass data
through them.

To circumvent the problem of not knowing how signals go through a connector both
connectors can be omitted and the wires can be merged (c). In a way this is a very natural
way of connecting two netlists, as in the real world if you connect to wires they will act
as if it was one. A downside of this approach is that a lot of wires have to be removed
and changed, but with some carefully written code this is no problem. As mentioned not
have a problem not now to pass information over the formed connection but again it only
solves the problem for the components which were connected, but it solves it in such a
way that we need no further information than what is in the netlist.

While in most cases it might be enough to have a one-to-one matching of the pins,
so pin 1 of connector one connects with pin 2 of connector two, sometimes there are
connections where this does not hold. In this case how the pins should connect has to be
provided by the user. All three different options can deal with this.

In the end we implemented the first option as this variant only modifies the two
connectors and adds wires but does not remove components.

A whole other issue which arises when connecting two netlists: the identifiers might
not be unique anymore. To address this we can change the identifiers to include a short
tag for the respective netlist at the beginning. So if we connected the Enzian netlist with
the BMC the designator IC1 on the Enzian could be changed to E.IC1 and the designator
IC1 on the BMC could be changed to B.IC1. This way it is possible to unambiguously
address components on connected netlists.

3.7 Augmenting the Netlist

Both applications, I2C and xdc verification, are limited by the fact that the netlist only
contains information about the connectivity between the components on the board. While
as we have seen we can follow signals through the netlist and at least partially extract
the I2C bus topology without the exact knowledge about how components behave, we
could achieve more precise results if we could add additional information to the netlist.
information it immensely limits the capabilities. This raises the question how we can
augment the information in the netlist.

As the information one might want to add to the netlist is very versatile, and the
actual data might even depend on the use case. For this reason it does not seem practical
to save this data within the netlist, separate files are more reasonable.

Both while verifying constraint files and extracting I2C bus topologies we ran into the
problem that the netlist is missing information about how signals are connected through
components. Here a file with this information would make the results more reliable no
assumptions about the connectivity have to be made. Such a file could have the following
form: It is a list of components which themselves have lists of connected pins.

Listing 3.2: Example of a file detailing the internal connections of components

[
{

” component type ” : ” example component a ” ,

14

” connec ted p ins ” : [
[” 1 ” , ” 3 ”] ,
[” 2” , ”4” , ”5”]

]
} ,
{

” component type ” : ” example component b ” ,
” connec ted p ins ” : [

[” 1 ” , ” 2 ”] ,
[” 3 ” , ” 4 ”]

]
}

]

This is in essence a netlist again, but to save it in the same format as the netlist of
the board would be overkill. If we only want to store the information how a component
connects pins internally we do not need the notion of different components, pins and
wires. Something to note here is that most components do not propagate logical signals
through them but some components as for example level shifters or multiplexers certainly
do. This is a very simple format and only hold information about how signals pass through
components, which is enough to know how different pins are connected. If we for example
wanted to model more complex behavior it might be possible to create files which store
the necessary information to achieve this goal.

To create such a file holding this information about how the components propagate
signals, the schematics or data sheets of the components have to be inspected.

With this information we can greatly simplify the tracing of the wires used for the
verification of constraint files and the extraction of the I2C bus.

Connection Between Components

With this additional information about how signals are carried through a component it
is much easier to find out how pins are connected. Although it might seem that we would
need no information if we should pass over the component, but that is not the case. If we
have a signal of an I2C bus there needs to be a pull-up resistor pulling the wire to high,
but we do not want to follow the signal over this resistor as it connected to the power
supply in which we are not interested if we want to follow the I2C bus. With this we can
create algorithm 4.

Here the connected pin functions returns the pins of a component which are internally
connected to a given pin of a component, if there is no connection nothing is returned.
The information of how the signals are connected within components has to be created
manually. This makes it possible to make errors and is time consuming.

I2C Bus

To improve the algorithm for finding we can use a file specifying the internal connections
of a components. This file can tell us if a component is not a device of the I2C bus.
When a signal of the I2C bus is transferred through a component we know that it is not
a device on the I2C bus. With this we can create the following algorithm.

15

Algorithm 4 Search Connections (2)

1: Input: pin a, component B, component information
2: wire queue← pin a.wire
3: for wire in wire queue
4: for pin in wire.pins
5: if pin.component == component B then
6: result← pin
7: else
8: wire queue← component information.connected pins(pin).wires
9: endif
10: endfor
11: endfor
12: return result

Algorithm 5 Extract I2C topology (3)

1: Input: SCL wire, SDA wire, component information
2: (SCL queue, SDA queue)← (SCL wire, SDA wire)
3: while (SDA wire, SCL wire)←match wires(SCL queue, SDA queue) do
4: (SCL components, SCL queue)←

component information.get connected(SCL wire)
5: (SDA components, SDA queue)←

component information.get connected(SDA wire)
6: I2C components← SCL components ∩ SDA components
7: endwhile
8: return I2C components

The get connected method of the component information returns the components and
wires connected to a given wire. The components it returns are components where the
signal ends, if a wire is connected to pin 1 and this pin is not connected internally the
component the pin is on is returned. The wires the method returns are wires which
are connected to the starting wire, i.e. if the given wire connects to pin 1 and the pin
is connected internally to an other pin of the component the wire to the other pin is
returned.

If the list of components which transfer the signal internally is correct this algorithm
allows us to get at least all devices on I2C bus. This is because with this algorithm we
essentially know the whole extend of the SDA and SCL wires and we do not have to guess
how the wires are connected.

3.8 Structuring The Data

The structure of the netlist (as described in 2.2) is tedious to work with. In this section
we will show how we restructured the netlist to use in the rust tool we created. While
with the existing layout of the netlist it is easy to know how wires connect to pins and
pins connect to components, it is hard to know the pins on a specific component and
given a pin which wire it connects to. The relation between pins and components is given
by the component type and reference field of the pins, which create a unique key for a

16

component in the component list. To know which are on a component we have to go over
every pin of every wire an check if the pin is on the desired component. Additionally the
pins are stored within the data of the wire. This makes clear how the wire connects to
pins but given a pin we once again have to go over all the wires to find the wire on which
the pin is located. To make the connections in all directions clearer we add references
from components to pins and pins to wires. Additionally we change the list of pins in
the wires to a list of references to pins to make the whole structure more consistent.
This results in a structure similar to an adjacency list with three different node types.

� Components have a designator as an identifier, a component type which gives
some information about what kind of component it is and a list of references to
pins on that components.

� Wires have a unique wire name and a list of references to pins connected to that
wire.

� Pins Pins have a number, a name, a pin type and a reference to the component
and wire it connects.

To keep track of all the parts there is a list for every type. This also makes it simple
to search for a wire by its name or a component by its designator. For simplicity the
references are the index into the respective list. For example the component reference of
a pin is the index of the component in the component list. To capture this data layout
the netlist struct was created.

Listing 3.3: Netlist struct

struct Netlist {

wires: Vec<Wire>,

pins: Vec<Pin>,

components: Vec<Component>,

}

struct Wire {

name: String,

pins: Vec<usize>,

}

struct Pin {

name: String,

number: String,

pin_type: String,

component: usize,

wire: usize,

}

struct Component {

component_type: String,

description: String,

designator: String,

pins: Vec<usize>,

17

}

This layout creates the foundation of our tool. It captures the connectivity of all the
parts.

A downside of this structure is that the different elements (the wires, pins and compo-
nents) of the netlist have no direct reference to other elements of the netlist. As a result
all accesses to different elements have to have to be accessed via the netlist struct.

18

Chapter 4

Evaluation

In this chapter we will show that the algorithms described in the previous chapter. To
do so we will conduct qualitative experiments. To characterize the program we set up
benchmarks to measure the performance of the program.

4.1 FPGA Configuration

4.1.1 Validate Pin Assignments

An interesting use case of the program is to verify the pin assignment for the FPGA on
Enzian. This will help to catch errors before the time consuming process of building the
bitstream and uploading it to the machine to see that it does not work.

To qualitatively show that this is possible to verify pin assignments we will look at
an example of a real issue that was found working with the Enzian. The goal was to
use a module which creates an interface from a four lane PCIe connection coming from
the board of Enzian to a internal AXI-stream on the FPGA for an NVMe over PCIe
application. This module is a so called ”hard IP”,so for this module to work properly the
ports of the module have to be assigned to the respective FPGA pin receiving the signal
from the board. The pin assignment can be changed for the FPGA using a constraint
file. On the board we can track the signals from the connector, where the signal ”enter”
the board, to the FPGA, this is what we consider the truth and what we compare the pin
assignments against. The PCIe connection has four lanes each of which has a transmit
an receive differential pair, resulting in 16 wires. The module for the FPGA names the
signals:

� pcie 7x mgt rtl 0 txp[<0-3>] are the four positive transmit signals.

� pcie 7x mgt rtl 0 txn[<0-3>] are the four negative transmit signals.

� pcie 7x mgt rtl 0 rxp[<0-3>] are the four positive receive signals.

� pcie 7x mgt rtl 0 rxn[<0-3>] are the four negative receive signals.

These signals are assigned by Vivado to pins of the XCVU9P FPGA. We will create three
different setups for the synthesis of the design. One with the default constraint of the IP
for the PCIe signals and two with constraints for the pin assignments.

19

Listing 4.1: Constraints A

s e t p r ope r t y PACKAGE PIN Y2 [g e t po r t s { pc i e 7 x mg t r t l 0 r xp [1] }]
s e t p r ope r t y PACKAGE PIN W4 [g e t po r t s { pc i e 7 x mg t r t l 0 r xp [2] }]

Listing 4.2: Constraints B

s e t p r ope r t y PACKAGE PIN {} [g e t p o r t s { pc i e 7 x mg t r t l 0 r xp [1] }]
s e t p r ope r t y PACKAGE PIN {} [g e t p o r t s { pc i e 7 x mg t r t l 0 r xp [2] }]

s e t p r ope r t y PACKAGE PIN Y2 [g e t po r t s { pc i e 7 x mg t r t l 0 r xp [1] }]
s e t p r ope r t y PACKAGE PIN W4 [g e t po r t s { pc i e 7 x mg t r t l 0 r xp [2] }]

For each of the synthesized designs we can export the pin assignment by first opening
the synthesized design and then export the I/O ports under the menu File > Export

> Export I/O Ports... and then export a CSV file. This file contains many different
data points including the pin number and signal name. From the netlist we can extract
how the PCIe connector connects to the FPGA. The PCIe connector we want has the
designator J27 4 and the FPGA has the designator IC3. With this knowledge we can
load the netlist and use the program to extract the pin pairs:

Listing 4.3: Extract pin pairs from netlist

let netlist = Netlist::from_platform_netlist("netlist_enzian.json");

let connector = netlist.get_component_by_designator("J27_4");

let fpga = netlist.get_component_by_designator("IC3");

let connected_pins =

netlist.get_connected_pins_of_components(connector, fpga);

...

On the connector the pin assignment is as follows, as can be read from the schematics.
The pin names are used to represent the function of the pins but also the connected wires
could be used as they convey the same information: Note: The table only shows the pins
of the connector forwarding the receive and transmit wires of the PCIe lanes, the others
(for example pins connected ground or a clock) are left out for simplicity.

Results

Running the synthesis with the three different constraints results in the following pin
assignments. For increased readability the signal names shortened, but their meaning
preserved. For example pcie 7x mgt rtl 0 txp[3] was changed into TX3+. Using the
tool to extract how the connector pins are connected to the FPGA we get the following
pairs: Table 4.4 is a result of combining 4.1 and 4.2 using table 4.3. The external signal is
what we expect the connections to be on the connector J27 4. In the middle it is shown
how the pins of the connector and FPGA are connected. No and A are the results of the
synthesis with no constraint and constraints A which do not differ and B is the result of
the synthesis with with constraints B. The colored entries are where the pin assignments
were different. Red indicates that the signals do not match and green is to indicate that
they do.

20

Table 4.1: Description of Connections

Pin Number Pin Name
A4 RX1+
A5 RX1-
A7 RX3+
A8 RX3-
B4 RX0+
B5 RX0-
B7 RX2+
B8 RX2-
C4 TX1+
C5 TX1-
C7 TX3+
C8 TX3-
D4 TX0+
D5 TX0-
D7 TX2+
D8 TX2-

Table 4.2: Pin Assignment Results

Pin Nr. No Constraints Constraints A Constraints B
AA9 TX3+ TX3+ TX3+
Y7 TX2+ TX2+ TX1+
W9 TX1+ TX1+ TX2+
V7 TX0+ TX0+ TX0+
AA8 TX3- TX3- TX3-
Y6 TX2- TX2- TX1-
W8 TX1- TX1- TX2-
V6 TX0- TX0- TX0-
AA3 RX3- RX3- RX3-
Y1 RX2- RX2- RX1-
W3 RX1- RX1- RX2-
V1 RX0- RX0- RX0-
AA4 RX3+ RX3+ RX3+
Y2 RX2+ RX2+ RX1+
W4 RX1+ RX1+ RX2+
V2 RX0+ RX0+ RX0+

21

Table 4.3: Pin Pairs

J27 Pin Nr FPGA Pin Nr
A4 Y2
A5 Y1
A7 AA4
A8 AA3
B4 V2
B5 V1
B7 W4
B8 W3
C4 Y7
C5 Y6
C7 AA9
C8 AA8
D4 V7
D5 V6
D7 W9
D8 W8

Table 4.4: Combined Results

External Signal J27 Pins FPGA Pin No and A B
RX1+ A4 Y2 RX2+ RX1+
RX1- A5 Y1 RX2- RX1-
RX3+ A7 AA4 RX3+ RX3+
RX3- A8 AA3 RX3- RX3-
RX0+ B4 V2 RX0+ RX0+
RX0- B5 V1 RX0- RX0-
RX2+ B7 W4 RX1+ RX2+
RX2- B8 W3 RX1- RX2-
TX1+ C4 Y7 TX2+ TX1+
TX1- C5 Y6 TX2- TX1-
TX3+ C7 AA9 TX3+ TX3+
TX3- C8 AA8 TX3- TX3-
TX0+ D4 V7 TX0+ TX0+
TX0- D5 V6 TX0- TX0-
TX2+ D7 W9 TX1+ TX2+
TX2- D8 W8 TX1- TX2-

22

Interpretation

This clearly shows that it is possible to get useful information out of the netlist. In the
netlist we can check how different components are connected and then use this information
to check if properties at different parts of the board match up. In this case we check if the
signals of a PCIe connection match up. Since the netlist and the information it contains
does not change, it suffices to extract how the pins are connected once. In this experiment
setup the converting of the signal names and the alignment of the result in table 4.2 was
done manually. For use in practice it definitely makes sense to create a small script to
automate this work, which could be done in future works investigating this.

23

4.1.2 Generating PACKAGE PIN Constraints

In this subsection we will qualitatively show that we can generate PACKAGE PIN proper-
ties. To be precise we will create these properties for one of the four memory connections.

To generate the PACKAGE PIN property constraints for the signals of one of the
four DDR4 DIMM 288 pin interfaces of the board of Enzian and compare the generated
constraints with existing constraints for the FPGA [6]. The DIMM 288 connector we
use in this example has the designator J17 5. To generate the constraint file we use the
specification for the DDR4 DIMM modules. Pins related to power are left out as they
do not need a pin constraint on the FPGA.

Listing 4.4: Section of the specification for the DIMM connector

{
” part ” : ” J17 5 ” ,
” p i n s i g n a l p a i r s ” : [

{” p in nr ” : ”3” ,” s i g n a l ” : ”DQ4”} ,
{” p in nr ” : ”5” ,” s i g n a l ” : ”DQ0”} ,
{” p in nr ” : ”7” ,” s i g n a l ” : ”DQS9 t”} ,
{” p in nr ” : ”8” ,” s i g n a l ” : ”DQS9 c”} ,
{” p in nr ” : ”10” ,” s i g n a l ” : ”DQ6”} ,
{” p in nr ” : ”12” ,” s i g n a l ” : ”DQ2”} ,
. . .
{” p in nr ” : ”47” ,” s i g n a l ” : ”CB4”} ,
{” p in nr ” : ”49” ,” s i g n a l ” : ”CB0”} ,
. . .
{” p in nr ” : ”58” ,” s i g n a l ” : ”RESET n”} ,
{” p in nr ” : ”60” ,” s i g n a l ” : ”CKE0”} ,
{” p in nr ” : ”62” ,” s i g n a l ” : ”ACT n”} ,
. . .
{” p in nr ” : ”68” ,” s i g n a l ” : ”A8”} ,
{” p in nr ” : ”69” ,” s i g n a l ” : ”A6”} ,
{” p in nr ” : ”71” ,” s i g n a l ” : ”A3”} ,
{” p in nr ” : ”72” ,” s i g n a l ” : ”A1”} ,
. . .
{” p in nr ” : ”87” ,” s i g n a l ” : ”ODT0”} ,
{” p in nr ” : ”89” ,” s i g n a l ” : ”CS1 n”} ,
{” p in nr ” : ”91” ,” s i g n a l ” : ”ODT1”} ,
. . .
{” p in nr ” : ”285” ,” s i g n a l ” : ”SDA”}

]
}

To convert the signal names of the specification to the names used in the FPGA a function
which does this conversion. The conversion is mostly turing the signal names to lower
case and rearranging the exact layout and it adds the prefix ddr4 0 to every signal. A
few examples:

� DQ4 → fpga 0 dq[4]

� DQS9 t → fpga 0 dqs t[9]

� CB0 → fpga 0 dq[0 + 64]

24

� RESET n → fgpa 0 reset n

� A1 → fpga 0 adr[0]

With the specification and the conversion function we can simply run the following code
to generate the constraint file:

Listing 4.5: Generating a XDC file.

let netlist = Netlist::from_platform_netlist("netlist_enzian.json");

netlist::xdc::create_xdc_package_pins(

&netlist,

"J17_5",

"IC3",

"memory_spec.json", // the specification for the pins

"generated_constraints.xdc", // path of the output file

conversion_function, // function which converts the

// specification signals to fpga

// signals

);

After generating the constraint file it is compared to to the existing constraint file to see
if it created different constraints.

Results

When generating the constraint file the following signals of the specification could not be
assigned: EVENT n, C2, SCL, SDA, SA0, SA1, SA2. These pins could not be assigned
because there was not a unique pin found for them on the FPGA. To complete the
generated constraint file the constraints for the remaining signals have to be created
manually for example by inspecting the schematics.

Comparing the two constraint files yields the following differences:

Listing 4.6: Differences between generated and and existing constraint files

Generated :
s e t p r o p e r t y PACKAGE PIN AN29 [g e t p o r t s { d d r 4 0 r e s e t n }]
s e t p r o p e r t y PACKAGE PIN AP30 [g e t p o r t s { ddr4 0 ac t n }]
s e t p r o p e r t y PACKAGE PIN BC33 [g e t p o r t s {ddr4 0 par }]
s e t p r o p e r t y PACKAGE PIN BF35 [g e t p o r t s { d d r 4 0 a l e r t n }]

Ex i s t i ng :
s e t p r o p e r t y PACKAGE PIN AN29 [g e t p o r t s d d r 4 0 r e s e t n]
s e t p r o p e r t y PACKAGE PIN AP30 [g e t p o r t s ddr4 0 ac t n]
s e t p r o p e r t y PACKAGE PIN BC33 [g e t p o r t s ddr4 0 par]
s e t p r o p e r t y PACKAGE PIN BF35 [g e t p o r t s d d r 4 0 a l e r t n]

Interpretation

These results show that we can generate the PACKAGE PIN property. The difference
observed in the generated and existing is that in the existing file not every signal is in
curly braces as in the generated (by design) every signal is. The curly braces are a way

25

to group information into words. [9] In this case they are used to make sure that the
signal names are passed to the get ports function as is. Without them the numbers in
the square brackets of signal names would be treated as commands.

In this example the conversion function is very crucial bun in principle the specification
could have been directly written converted.

4.2 I2C

To qualitatively show that we are able to extract the devices of an I2C bus we will extract
the devices of an I2C bus of Enzian.

The I2C bus we will inspect is called F I2C0Ṫhis bus operates on two dwo different
voltages which are connected through a level shifter.

Listing 4.7: Component specification detailing how signals going through the level shifter.

[
{

” component type ” : ”LSF0102DCUR” ,
” connec ted p ins ” : [

[” 3 ” , ” 6 ”] ,
[” 4 ” , ” 5 ”]

]
}

]

The wires used as an input were the wires with the name F I2C0 1V2.SDA and
F I2C0 1V2.SCL.

Listing 4.8: Extracting I2C bus devices.

let netlist = Netlist::from_platform_netlist("netlist_enzian.json");

let sda = netlist.get_wire_by_name("F_I2C0_1V2.SDA");

let scl = netlist.get_wire_by_name("F_I2C0_1V2.SCL");

let i2c_components = get_i2c(

&netlist,

scl,

sda,

"component_spec.json"

);

The result of running this experiment is shown in table 4.5. The algorithm returned
the FPGA and the four DDR4-DIMM connectors.

A close inspection of the schematics [3] shows that the result is indeed correct. This
indicates that we are able to extract the I2C topologies.

4.3 Characterizing

In this section we will characterize the program we built in the thesis. To characterize
the program we measured the the time it takes to open netlist and how long it takes to

26

Table 4.5: Extracting I2C bus devices result.

Designator Component Type
IC3 XCVU9PFLGB2104
J17 5 DDR4-DIMM SMD 288 pos
J17 8 DDR4-DIMM SMD 288 pos
J17 6 DDR4-DIMM SMD 288 pos
J17 7 DDR4-DIMM SMD 288 pos

explore an entire netlist using the implementation of the Search Connections algorithm
(Algorithm 1).

Benchmark Environment

All measurements were made on a HP ProBook x360 435 G7. The laptop has a AMD
Ryzen 5 4500u CUP and 16 gigabytes of memory. The tests were run under the Ubuntu
22.04.4 LTS and compiled with the rust compiler version 1.76.0. To run the benchmarks
the Criterion rust crate (version 0.3.0) was used.[2]. The laptop was plugged in and in
normal power mode.

4.3.1 Generating Netlists

To measure the performance of the program we need a way to generate netlist of different
sizes. For simplicity we create a netlist with the following layout: The parameter n

START

1

2

n

END

· · ·

Figure 4.1: Illustration of the netlist generated for the characterization.

changing the size of the netlist defines how many components there are in the center
of the netlist. The number of different elements of the netlist depends on n as shown
in table. Observe that all the elements grow linearly as n grows, preserving the ration
between them. 4.6 The Even if this structure is not very similar to an actual circuit it
provides a scalable way to generate netlists to use in our experiments.

27

Table 4.6: Relation between n and the number of elements.

Pins 4n + 4
Components n + 4
Wires 2n + 2
Total 7n + 10

4.3.2 Converting Netlists

In this subsection we will measure how long it takes to convert netlists from the form
described in section 2.2 to the representation used internally by the program. This is
a central part of the program because to use any netlist we have change it into the
representation used by the program. To quantify this we will measure how long it takes
to convert netlists of different sizes.

To measure the relation between the netlist size and the time it takes to convert
it from the representation described in section 2.2 to the representation used by the
program detailed in section 3.8. For the measurements netlists of the form described
in the previous section were created with the values 500, 1000, 1500, 2000, 3000, 4000,
5000, 7500, 10000 and 15000 for n. The netlists were loaded into memory as we are not
interested in how fast we can load the file from disk but the time it takes to convert the
netlist. For each n 10 seconds of warmup executions were run and then 100 executions
were timed.

The results of the experiment are shown in figure 4.2. The y-axis is the average
execution time in milliseconds and the x-axis shows the size of the netlist.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·104

0

100

200

300

400

500

600

Netlist Size (n)

A
ve

ra
ge

E
x
ec

u
ti

on
T

im
e

(m
il

li
se

co
n

d
s)

Netlist Representation Conversion Benchmark

Figure 4.2: Benchmark results showing the relationship between average execution time
to convert the netlist and netlist size.

The result show a clear linear relationship between the netlist size and the time it
takes to convert it. For a netlist roughly of the size of the netlist of Enzian it takes about
a tenth of a second to convert.

28

4.3.3 Connection Search

To understand how the program performs searching for connected pins in the netlist we
measure the execution time for the implementation of 1 as the size of netlist increases.

To measure the relation between execution time and netlist size, different values to
generate netlists as described above were used. The values of n used were 500, 1000,
1500, 2000, 3000, 4000, 5000, 7500, 10000 and 15000. The measurements were made in
two batches. The fist batch was for the measurements up to and including n = 4000. For
this batch 100 measurements were taken. The second batch measured from n = 5000 up
to n = 15000. As the execution time increased fo the second batch only 25 measurements
were taken. For each n first a netlist was generated and it was warmed up for 10 seconds.
As the source pin the pin of the START component was used and as a target the END
component. This way the whole netlist was visited by the algorithm.

Running the benchmarks we get the get the results shown in figure 4.3. The y-axis is
the average execution time for the different runs in seconds. The x-axis shows how many
center nodes were used in the netlist.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0

10

20

30

Netlist Size (n)

A
ve

ra
ge

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d

s)

Connection Search Benchmark

Batch 100
Batch 25

Figure 4.3: Benchmark results showing the relationship between average execution time
and netlist size. Orange showing the data points with 25 iterations and and blue showing
the data points with 100 iterations.

This represents a worst case for the algorithm as the whole netlist will be visited
and hence gives an estimation for what sizes of netlists the program can deal with in
reasonable time. To set this into perspective we can consider the netlist of Enzian which
has 27090 elements in total, so a generated netlist with n ≈ 3850 would be of a similar
size. For this size it takes about a second for the function to finish. The measurements
clearly show that the execution time grows faster than linear so for very large netlists
will take a long time in the worst case.

29

Chapter 5

Conclusion

Platform configurations are crucial for systems software to run. These configurations can
have different forms and can be tedious to create. Netlist can capture the topology of a
system.

In this thesis we explored if we can use netlists to generate such system files. We
were able to make an algorithm which can find connections within the netlist. This
connectivity information has been successfully used to validate the pin assignments of
a synthesized designs. We also were able to generate the PACKAGE PIN property for
Xilinx Design Constraint files with the help of specifications and a function transforming
the signal names of the specification to names used in the code for the FPGA.

Additionally we have shown that it is possible to extract the topologies of I2C buses.
To achieve this we take advantage of the I2C bus design, namely the fact that the bus
has two wires.

To make it easier to work with the netlist and implement the algorithm discussed we
created a different data layout. This was used to create a rust program which provides
an interface for manipulating netlists.

Future Work

This thesis shows that netlists can be used to generate and validate simple system configu-
rations. Subsequent investigations could expand this work by exploring if more properties
of XDC files can be generated.

Further it would be interesting to explore if it is possible to extract more complex
topologies from the netlist as for example power and clock distribution topology.

For both topics it could be interesting to investigate how the information in the netlist
could be even further augmented.

30

Bibliography

[1] David Cock et al. “Enzian: An Open, General, CPU/FPGA Platform for Systems
Software Research”. In: Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. Lau-
sanne Switzerland: ACM, Feb. 2022, pp. 434–451. isbn: 978-1-4503-9205-1. doi:
10.1145/3503222.3507742. (Visited on 05/09/2024).

[2] Criterion in Criterion - Rust. https://docs.rs/criterion/latest/criterion/struct.Criterion.html#.
(Visited on 05/26/2024).

[3] Enzian Mainboard Schematics. https://enzian.systems/documentation/. (Visited
on 04/01/2024).

[4] I2C-bus Specification and User Manual. https://www.nxp.com/docs/en/user-guide/UM10204.pdf.
2021. (Visited on 04/13/2024).

[5] Micha l Kruszewski and Wojciech Marek Zabo lotny. “Safe and Reusable Approach
for Pin-to-Port Assignment in Multiboard FPGA Data Acquisition and Control
Designs”. In: IEEE Transactions on Nuclear Science 68.6 (June 2021), pp. 1186–
1193. issn: 1558-1578. doi: 10.1109/TNS.2021.3074530. (Visited on 12/10/2023).

[6] PROJECT-Enzian / Enzian FPGA · GitLab · Enzian v3 fpga constraints ddr included.Xdc.
https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian. July 2020. (Visited on 05/25/2024).

[7] Stephen Sangwine. Electronic Components and Technology. Tutorial Guides in Elec-
tronic Engineering. isbn: 978-0-8493-7497-5.

[8] Jasmin Schult et al. “Declarative Power Sequencing”. In: ACM Transactions on
Embedded Computing Systems 20.5s (Oct. 2021), pp. 1–21. issn: 1539-9087, 1558-
3465. doi: 10.1145/3477039. (Visited on 05/18/2024).

[9] TCL Language. https://www.tcl.tk/about/language.html. (Visited on 05/25/2024).

[10] UltraScale and UltraScale+ FPGAs Packaging and Pinouts Product Specification.
https://docs.amd.com/viewer/book-attachment/pUJmWcGC˜qni8WKt2P3cEQ/8lPue6lfpx7QpUq2oL9D5g.
2023. (Visited on 05/27/2024).

[11] Vivado Design Suite User Guide Using Constraints. https://www.xilinx.com/support/documents/sw manuals/xilinx2022 1/ug903-
vivado-using-constraints.pdf. 2022. (Visited on 12/27/2023).

[12] Vivado Overview. https://www.xilinx.com/products/design-tools/vivado.html. (Vis-
ited on 05/09/2024).

[13] What Are Netlists in PCB Design Projects? https://resources.altium.com/p/what-
are-netlists-pcb-design-projects. Jan. 2023. (Visited on 12/16/2023).

31

